## DEVELOPMENT OF TECHNIQUES FOR THE EXTRACTION OF NATURAL PRODUCTS USING LIQUID CO<sub>2</sub>

By

Randy Ferrera

A Thesis submitted to the Faculty of

LIFE SCIENCES

Department of

FOOD TECHNOLOGY

In Partial Fulfillment of the Requirements for

**BACHELOR'S DEGREE** 

IN
FOOD TECHNOLOGY

Swiss German University EduTown BSDCity Tangerang 15339 INDONESIA

www.sgu.ac.id

July 2011

Randy Ferrera

#### STATEMENT BY THE AUTHOR

I hereby declare that this submission is my own work and to the best of my knowledge, contains no material previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma at any educational institution, except where due acknowledgement is made in the thesis.

| Approved by:                   | Date      |
|--------------------------------|-----------|
| Tutun Nugraha, BASc, MASc, PhD | Date Date |
| Hery Sutanto S.Si              | Date      |
|                                |           |

#### **ABSTRACT**

## DEVELOPMENT OF TECHNIQUES FOR THE EXTRACTION OF NATURAL PRODUCTS USING LIQUID CO<sub>2</sub>

By

Randy Ferrera

#### SWISS GERMAN UNIVERISTY

Bumi Serpong Damai

Tutun Nugraha, BASc, MASc, PhD, Major Lecturer

The study was conducted to study and develop the techniques of liquid CO<sub>2</sub> extraction by measuring and controlling the pressure and temperature of the process and to use the techniques to extract natural products namely orange peel and green tea. 15 ml centrifuge tubes were used as extraction chamber. The centrifuge tube was connected to a pressure gauge, safety valve, and pressure relieve valve to measure the pressure inside the tube and the characteristics of CO<sub>2</sub> phase changes. A thermometer was also used to measure the water bath temperature in which the centrifuge tube was submerged. The pressure inside the tube was set to 5.5, 6.5, and 7.5 bars as for the water bath; the temperature was kept at 20°C, 30°C, 40°C, and 50°C. From the experiment, it could be concluded that the optimum extraction condition using liquid CO<sub>2</sub> was at 7.5 bars and water bath temperature 20°C. Under these conditions the liquid CO<sub>2</sub> was more stable in the liquid phase and had also the longest contact time with the sample compared with other pressure and temperature condition. The effectiveness of the liquid CO<sub>2</sub> extraction was also compared with the solvent extraction using orange peel as its sample. Dried green tea was also used as another sample for the extraction of polyphenol and caffeine. The result showed that liquid CO<sub>2</sub> has the potential to be used as solvent to extract compound from both orange peel and green tea leaves.

#### **DEDICATION**

I dedicate this thesis to my family, Mayaswari Handoyo, and everyone who has supported and encouraged me.



#### **ACKNOWLEDGMENTS**

I would like to give my deepest gratitude to my Lord, Jesus Christ for His blessing from the beginning of my thesis work until the completion of it. I would also like to thank my family, my father and mother for their encouragement, and my sister. To Mayaswari Handoyo, I would like to say thank you for accompanying me throughout this thesis, helped me washing my instruments, cherished me when I was down, no one gave me such moral support more than you did.

To Mr. Tutun Nugraha, I can't say anything more but thank you. Thank you for your advice, guidance, and knowledge which have helped me through the making of this thesis until its completion, you are the best lecturer ever Sir, I am proud having you as my advisor. To Mr. Heri, I would also to thank you for your support as my co-advisor. Mr. Tabligh Permana, I would like to say thank you so much for your patience in helping and answering all of the questions from the thesis students, and me myself of course, and also for the instruments which were borrowed throughout my thesis work. Mr, Muzi who gave me advises about the statistical analysis and Ms. Heni who lent me several equipments from the environmental laboratory, I would like to say thank you to both of you too.

To Mr. Pudjo from PPTK, I would like to say thank you for providing me raw materials for my thesis. To Mr Ridwan and Mr. Deden, thank you for your help in developing my instrument. To Mr. Daman who bought me my dry ice every week, thank you. Last but not least, I would like to thank all of my friends who helped me during my thesis, Alethea Djaja, Tritia Marshani, Bernadet Anita, James Sumawi, Helen Leonardo, Sheila Ariani, Eflin Adrian Vitri and also my friends who gave me such a delightful sensory tests, Ria Amelia, Aditya Jucha, Jeffry Sukwanto, Livia Chia. For the resf of my friends in FT 2007 class, I would also like to say thank you for your companionship during this four years. It was a pleasant and unforgettable moment for me.

Finally, to the readers, I hope the information in this thesis can improve your knowledge about the subject and I would like to apologize for any errors that occurred in this thesis. Any comments and suggestion for better improvement are absolutely welcomed.

BSD, July 2011

Randy Ferrera

### TABLE OF CONTENTS

| STATEMENT BY THE AUTHOR                               |    |
|-------------------------------------------------------|----|
| ABSTRACT                                              | 3  |
| DEDICATION                                            | 4  |
| ACKNOWLEDGMENTS                                       | 5  |
| TABLE OF CONTENTS                                     | 6  |
| LIST OF TABLES                                        | 9  |
| LIST OF FIGURES                                       | 10 |
| LIST OF GRAPHS                                        | 11 |
| LIST OF APPENDICES                                    | 12 |
| CHAPTER 1 – INTRODUCTION                              | 13 |
| 1.1 Background of Research                            | 13 |
| 1.2 Research Purpose                                  |    |
| 1.3 Research Problems                                 | 14 |
| 1.4 Significance of the Study                         | 14 |
| 1.5 Research Questions and Hypothesis                 | 14 |
| 1.5.1Questions                                        | 14 |
| 1.5.2 Hypothesis                                      | 15 |
| CHAPTER 2 – LITERATURE REVIEW                         |    |
| 2.1 Carbon Dioxide (CO <sub>2</sub> )                 |    |
| 2.1.1 Carbon Dioxide Physical and Chemical Properties | 17 |
| 2.1.2 Carbon Dioxide Phase Diagram                    | 18 |
| 2.1.3 Production of Solid Carbon Dioxide              | 20 |
| 2.1.3.1 Carbon Dioxide from Fermentation              | 21 |
| 2.1.3.2 Carbon Dioxide from Flue Gas Recovery         | 22 |
| 2.1.3.3 Membrane Separation Systems                   | 23 |
| 2.1.3.4 Solid Carbon Dioxide Manufacturing Process    | 23 |
| 2.1.4 Carbon Dioxide as Greenhouse Gas                | 24 |
| 2.2 Essential Oils                                    | 26 |
| 2.2.1 Extraction of Essential Oil                     | 29 |
| 2.2.1.1 Solvent Extraction                            | 29 |

| 2.2.1.2 Distillation                                                           | 31 |
|--------------------------------------------------------------------------------|----|
| 2.2.1.3 Supercritical Fluid Extraction (SCFE)                                  | 35 |
| 2.2.1.4 Liquid Carbon Dioxide Extraction                                       | 38 |
| 2.3 Sweet Oranges (Citrus x sinensis)                                          | 40 |
| 2.3.1 Plant Description                                                        | 40 |
| 2.3.2 Use of Citrus                                                            | 42 |
| 2.3.3 Essential Oil of Sweet Orange                                            | 43 |
| 2.4 Tea (Camellia sinsensis)                                                   | 44 |
| 2.4.1 Green Tea                                                                | 45 |
| 2.4.2 Major Components in green tea                                            | 46 |
| 2.4.2.1 Phenolic Compounds                                                     | 46 |
| 2.4.2.2 Nonphenolic Compounds                                                  | 46 |
| 2.5 GC-MS Analysis                                                             | 47 |
| CHAPTER 3 – METHODOLOGY                                                        | 51 |
| 3.1 Date and Venue                                                             | 51 |
| 3.2 Materials, Chemicals, and Equipment                                        | 51 |
| 3.2.1 Materials                                                                | 51 |
| 3.2.2 Chemicals                                                                | 51 |
| 3.2.2 Equipment                                                                | 51 |
| 3.3 Preliminary Research                                                       | 53 |
| 3.4 Research Procedure                                                         | 54 |
| 3.4.1 Measurement of Contact Time between Liquid CO <sub>2</sub> and Sample at | nd |
| Characteristics of Pressure inside Centrifuge Tube                             | 54 |
| 3.4.2 Extraction of Essential Oil of Sweet Oranges Peel Using Liquid Co        |    |
| 3.4.2.1 Preparation                                                            | 55 |
| 3.4.2.2 Extraction Process                                                     | 55 |
| 3.4.3 Extraction of Dried Green Tea Leaves Using Liquid CO <sub>2</sub>        | 56 |
| 3.4.3.1 Preparation                                                            | 56 |
| 3.4.3.2 Extraction Process                                                     | 56 |
| 3.4.4 Extraction of Essential Oil of Sweet Oranges Peel Using Solvent          |    |
| Extraction                                                                     | 57 |
| 3.4.5 Determination of Caffeine Content in Green Tea by UV/Vis                 |    |
| Spectroscopy                                                                   | 57 |
| 3.4.6 Analysis of Moisture Content                                             |    |

| 3.4.7 Total Phenolic Compounds Analysis                              | 59 |
|----------------------------------------------------------------------|----|
| CHAPTER 4 – RESULTS & DISCUSSION                                     | 60 |
| 4.1 Preliminary Research                                             | 60 |
| 4.2 Characteristics of Pressure during Extraction Process            | 64 |
| 4.3 Contact Time Measurement                                         | 69 |
| 4.4 Extraction of Essential Oil of Sweet Oranges Peel                | 72 |
| 4.4.1 Liquid CO <sub>2</sub> Extraction of Sweet Oranges Peel        | 72 |
| 4.4.2 Solvent Extraction of Sweet Oranges Peel                       | 73 |
| 4.4.3 Comparison between Essential Oils with Different Method of     |    |
| Extraction                                                           | 75 |
| 4.5 Extraction of Dried Green Tea Leaves Using Liquid Carbon Dioxide | 77 |
| 4.5.1 Total Phenolic Content of Dried Green Tea Leaves               | 78 |
| 4.5.2 Total Caffeine Content of Dried Green Tea Leaves               | 80 |
| 4.6 Potential Uses of Liquid CO2 for Indonesia Natural Product       | 82 |
| CHAPTER 5 – CONCLUSION AND RECOMMENDATION                            | 83 |
| 5.1 Conclusion                                                       | 83 |
| 5.2 Recommendation                                                   | 84 |
| REFERENCES                                                           | 85 |
| APPENDICES                                                           | 98 |
| CURRICULUM VITAE                                                     |    |

# SWISS GERMAN UNIVERSITY

