OPTIMIZED PROCESS CONTROL FOR OPERATION, ENERGY, MANAGEMENT, AND MAINTENANCE IN BOILER PLANT USING SCADA

By

Kenny Jesse Hartanto 2-2015-1109

MASTER'S DEGREE in

MECHANICAL ENGINEERING – MECHATRONICS CONCENTRATION FACULTY OF ENGINEERING AND INFORMATION TECHNOLOGY

SWISS GERMAN UNIVERSITY EduTown BSD City Tangerang 15339 Indonesia

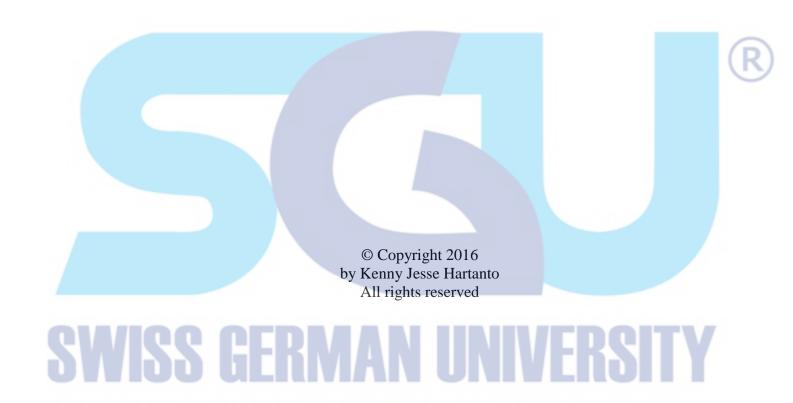
Revision after Thesis Defense on July 29, 2016

STATEMENT BY THE AUTHOR

	I hereby declare that this submission is my own work and to	the best of my
	knowledge, it contains no material previously published or written b	by another person,
	nor material which to a substantial extent has been accepted for the a	ward of any other
	degree or diploma at any educational institution, except where due	acknowledgement
	is made in the thesis.	
	Kenny Jesse Hartanto	
	Student	Date
	Approved by:	
$\mathbf{q}M$	ICC CERMAN IINIVE	RCITV
	Dr. Ir. Hanny J. Berchmans, M.T., M.Sc.	
	Thesis Advisor	Date
	Dana Handriana DCa CM Ca D	
	Dena Hendriana, BSc., S.M., Sc.D	
	Thesis Co-Advisor	Date
	Dr. Ir. Gembong Baskoro, M.Sc.	
	Dean	Date
		Date
	K	enny Jesse Hartanto

ABSTRACT

OPTIMIZED PROCESS CONTROL FOR OPERATION, ENERGY, MANAGEMENT, AND MAINTENANCE IN BOILER PLANT USING SCADA


By

Kenny Jesse Hartanto
Dr. Ir. Hanny J. Berchmans, M.T., M.Sc., Advisor
Dena Hendriana, BSc., S.M., Sc.D, Co-Advisor

SWISS GERMAN UNIVERSITY

Over the years for high quality, greater efficiency and automated machines has increased in the industrial. Plants require continuous monitoring and inspection at specific time intervals. There are number of possibilities of errors at measuring parameters and various stages involved with human workers and the lack of few features of microcontrollers. This paper attempt to explain the advantages the companies will face by implementing automation into them. The boiler control, which is the most important part of any plant, and its automation, is the precise effort of this paper. In order to automate and minimize human intervention, there is a need to develop a Supervisory Control and Data Acquisition (SCADA) system that used to monitors the plant and helps to reduce the errors caused by humans. While the SCADA is used to monitor all parameter system in plant, Programmable Logic Controller (PLC) is also used for the internal storage of instruction for the implementing function such as programming, sequencing, logic, counting, timing and arithmetic to control through digital or analog I/O modules.

Keywords: Automation, Programmable Logic Controller (PLC), Supervisory Control and Data Acquisition system (SCADA), Boiler.

DEDICATION

I dedicate this works to all my family members, College friends, lecturers in Swiss German University who have been constant source of motivation, inspiration and support

ACKNOWLEDGEMENTS

Praise to the Lord for his grace and guidance that he has given to the authors until the research and writing of thesis entitled OPTIMIZED PROCESS CONTROL FOR OPERATION, ENERGY, MANAGEMENT, AND MAINTENANCE IN BOILER PLANT USING SCADA can be completed on time.

This thesis is prepared as the requirement in completing study of Master Mechanical Engineering – Mechatronics Program in Swiss German University, Tangerang.

This thesis writing cannot be completed without any help from several parties. Therefore, the authors would like to say thank you to:

- 1. Dr. Ir. Gembong Baskoro, M.Sc., as the Dean of Faculty of Engineering and Information Technology in Swiss German University.
- 2. Prof. Ir. Houtman P. Siregar, M.Si., Ph.D. (Alm), as the Acting Head of Master of Mechanical Engineering (Mechatronics) in Swiss German University.
- 3. Dena Hendriana. BSc., M.Sc., Ph.D, as the Deputy Head Of Master of Mechanical Engineering (Mechatronics) in Swiss German University.
- 4. Dr. Ir. Hanny J. Berchmans, M.T., M.Sc., as an advisor who has given a lot of guidance to the authors in writing this thesis.
- 5. Families who have given material and moral support to the authors in completing the thesis writing.
- 6. Friends who have given motivation and feedback to the authors in completing the thesis writing.
- 7. All lecturers in Swiss German University who have given guidance, knowledge, and skill to the authors.
- 8. All parties who have directly or indirectly helped in the preparation of this thesis.

The authors realize that this thesis is not perfect. Thus, the authors expect critics and constructive suggestions from all parties for revision and further improvements.

In the end, the authors want to apologize for every faulty of this thesis. Hopefully this thesis can provide benefits for all readers.

TABLE OF CONTENTS

		Page		
STAT	TEMENT BY THE AUTHOR	2		
ABST	TRACT	3		
DEDI	DEDICATION			
ACKI	ACKNOWLEDGEMENTS			
TABLE OF CONTENTS				
LIST	LIST OF FIGURES			
LIST	OF TABLES	13		
CHAI	PTER 1 - INTRODUCTION			
1.1	Background	14		
1.2	Research Problem			
1.3	Research Objective			
1.4	Significance of Study	16		
1.5	Research Qustions	16		
1.6	Hypothesis			
CHAI	PTER 2 – LITERATURE REVIEW	18		
2.1	SCADA System	18		
2.1.1	SCADA System Parts	19		
2.1.2	SCADA Software	19		
2.1.2.	1 HMI	20		
2.1.2.	2 OPC Server	20		
2.1.2.	3 Database Server	21		
2.2	SCADA Protocols	21		
2.3	Boiler Automation	22		
2.3.1	Boiler	22		
2.3.2	Critical Parameter Control in Boiler	23		
2.3.3	Boiler Control Automation Method	23		
2.3.3.	1 Fuzzy Logic Control Method	23		
2.3.3.2 PID Contorl Method				
2.3.3.	3 Programmable Logic Controller and SCADA	24		
2.3	Previous Studies	25		

CHAPTER 3 – RESEARCH METHODS				
3.1	Materials and Equipment	26		
3.1.1	SCADA Wonderware	26		
3.1.2	Beckhoff PLC	27		
3.1.3	Toshiba Electromagnetic Flowmeter water	33		
3.1.4	RMG EC600 Gas Meter	34		
3.1.5	Sierra Multivariable Mass Vortex Flowmeter	35		
3.1.6	MOXA	36		
3.2	System Requirement	37		
3.3	System Overview	38		
3.3.1	Present System	38		
3.3.2	Proposed System			
3.4	Control Boiler	38		
3.5	Analytical Method	41		
3.5.1	Calculation Heat Loss	41		
3.5.1.1	HL1: Heat Loss due to Dry Flue Gas (in %)	41		
3.5.1.2	2 HL2: Heat Loss due to Evaporation of Water Formed due to H2 in Fuel (%	6)41		
3.5.1.3	3 HL3: Heat Loss due to Moisture Present in the Fuel (in %)	41		
3.5.1.4	4 HL4: Heat Loss due to Moisture Present in the Air (in %)	41		
3.5.1.5	5 HL5: Heat Loss due to Formation of Carbon Monoxide (in %)	42		
	5 HL6: Heat Loss due to Radiation and convection (in %)			
3.5.1.7	7 HL7: Heat Loss due to Unburnt Carbon (in %)	42		
3.5.2	Boiler Efficiency	42		
3.5.2.1	Direct Method of testing	43		
3.5.2.2	2 Indirect Method of testing	43		
3.5.3	Block Diagram	44		
3.5.4	Flowchart Process	44		
3.5.5	Simulation	46		
3.5.6	Implementation	47		
CHAPTER 4 – RESULTS AND DISCUSSIONS50				
4.1	Problem Analysis	50		
4.1.1	Existing System Desing	50		
4.1.2	Problem Solution	50		
4.1.3	Line Diagram SCADA Boiler			
4.2	Data Analysis	55		

4.2.1 Boiler efficiency test	55		
4.2.1.1 Data of the Fire Tube Boilers			
4.2.1.2 Heat Loss Method Data			
4.2.1.3 Boiler Efficiency Result			
4.2.2 Labor Cost	59		
4.2.3 Time Consuming in Operating Boiler.	60		
CHAPTER 5 – CONCLUSION AND RECCOMENDATIONS			
5.1 Conclusion	63		
5.2 Recommendations	63		
GLOSSARY64			
REFERENCES	66		
FIGURE REFERENCES			
LIST OF APPENDIX			
APPENDIX	71		
CURRICULUM VITAE	79		

SWISS GERMAN UNIVERSITY