REPAIRING AND IMPROVING WATER BOTTLE CAPPING AND PACKAGING MACHINES TO BE USED FOR EDUCATIONAL PURPOSE IN THE LABORATORY

By
Samuel Ade Setiawan
ID Number: 1-1107-033

A Bachelor's Thesis
Submitted to the Faculty of Engineering
DEPARTMENT OF MECHATRONICS

in partial fulfillment of the requirements for the Degree of

BACHELOR OF SCIENCES
WITH A MAJOR IN MECHATRONICS

SWISS GERMAN UNIVERSITY
Campus Edu Town, BSD City
Tangerang – 15339
Indonesia
www.sgu.ac.id

July 2011

STATEMENT OF THE AUTHORS

I hereby declare that this submission is my own work and to the best of my knowledge, it contains no material previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma at any educational institution, except where due acknowledgment is made in thesis.

			(
	Samuel Ade Setiawan	Date					
	Approved by:						
SW	Dipl. –Ing. Maralo Sinaga	Date TV					
	Dr. Ir. Tutuko Prajogo, MSMfgE	Date					
	Chairman of the Examination Steering Committee	Date					
	Samuel Ade Setiawan						

ABSTRACT

REPAIRING AND IMPROVING WATER BOTTLE CAPPING AND PACKAGING MACHINES TO BE USED FOR EDUCATIONAL PURPOSE IN THE LABORATORY

By
Samuel Ade Setiawan

SWISS GERMAN UNIVERSITY
Bumi Serpong Damai

Dipl. –Ing. Maralo Sinaga, Thesis Advisor

Dr. Ir. Tutuko Prajogo, MSMfgE, Thesis Co-Advisor

This thesis work is a continuation of the two previous ones which are "Designing and Developing a Capping Machine for an Automated and Flexible Water Bottling Machine" and "Designing and Developing Bottled Mineral Water Packaging System". This thesis aims at providing capping and packaging machines which can be used as learning aids in the laboratory.

Capping station is one of the process stations in an automatic bottled water production system whose objective is to put the cap on the lip of the bottle and then tight it. Packaging station is also one of the process stations of this system which is able to pick capped bottle from previous station and then put it at the desired position.

Both of them are the last two of total four stations of an automation water bottling system which consist of rinsing station, filling station, capping station, and packaging station. The systems are designed to be flexible with different bottle sizes and safe enough to be operated by students.

As the result, productivity and efficiency of both machines are improved. Moreover, mobility and modularity system are also added in both machines. Several improvements are recommended, such as implement fix coupling for capping machine and Z-axis mechanism for packaging machine.

Keywords:

Bottling Machine, Capping Machine, Packaging Machine, Flexible System

DEDICATION

I dedicate this thesis to SGU Mechatronics Department to be used for educational learning tools.

ACKNOWLEDGMENTS

The author would like to thank to:

- 1. Lord Jesus Christ for His mercy and goodness in author's life.
- 2. Papa, Mama, and Ooh as the best family who support all the time in doing this thesis.
- 3. Mr. Maralo Sinaga and Mr. Tutuko Prajogo for their willingness to guide and support patiently during the thesis work.
- 4. MT 2007 student for the four amazing years in SGU.
- 5. SGU Bible Fellowship for the constant prayer.
- 6. Politeknik Werner von Siemens as the facilitator in building the machines.
- 7. Febbe Christanty for her occasionally "Semangat..!!"

TABLE OF CONTENTS

STATEMENT OF THE AUTHORS2						
ABSTRACT						
DEDICATION	4					
ACKNOWLEDGMENTS	5					
TABLE OF CONTENTS						
LIST OF TABLES	g					
LIST OF FIGURES	10					
CHAPTER 1 – INTRODUCTION						
1.1 Thesis Introduction	15					
1.2 Background	15					
1.3 Thesis Statement	16					
1.4 Scope of Work	16					
1.5 Thesis Limitation	17					
1.6 Thesis Structure	17					
CHAPTER 2 – LITERATURE REVIEW	19					
2.1 Various Capping Machine	19					
2.1.1 Inline Bottle Capping Machine	19					
2.1.2 Rotary Bottle Capping Machine	20					
2.1.3 Cap Feeding Method	21					
2.1.4 Cap Tightening Mechanism	23					
2.1.5 Previous Thesis Bottle Capping Machine	24					
2.2 Miscellaneous Packaging Machine	25					
2.2.1 Cartoning Machine	25					
2.2.2 Shrink Wrap Machine	26					
2.2.3 Handling Robot	27					
2.2.4 Gripper Mechanism	28					

	2.2.	.5	Previous Bottle Packaging Machine	30
	2.3	Ser	sor used by Previous Thesis Projects	31
	2.3	.1	Mechanical Limit Switch	31
	2.3	.2	Proximity Switch Sensor	32
	2.3	.3	Photoelectric Sensor	32
	2.3	.4	Reed Switch Sensor	33
	2.4	Cor	ntroller used by Previous Thesis Projects	33
	CHAPTE	ER 3	– METHODOLOGY	34
	3.1	Wa	ter Bottling System Explanation	34
	3.2	App	proach to Redesign and Improve Capping Machine	38
	3.2.	.1	Looking at Previous Thesis Capping Machine	38
	3.2.	.2	Improvement Idea and Proposed Solution	44
	3.3	Nex	t Development of Packaging Machine	57
	3.3	.1	Looking at Previous Thesis Packaging Machine	57
	3.3	.2	Improvement Idea and Proposed Solution	58
	CHAPTE	ER 4	- RESULT AND DISCUSSION	70
	4.1	Res	sult of Capping Station	70
OVVI	4.1.	.1	Corrections and Adjustment of Capping Machine	70
	4.1.	.2	Testing and Analyzing Subsystem of Capping Machine	72
	4.2	Res	sult of Packaging Station	76
	4.2	.1	Correction and Adjustment from Initial Design of Packaging Machine	.76
	4.2	.2	Testing and Result of Packaging Machine	77
	4.3	Res	sult of Modular Components	81
	CHAPTE	ER 5	- CONCLUSION AND RECOMMENDATION	82
	5.1	Cor	nclusion	82
	5.2	Futi	ure Recommendations	83
	GLOSS	ARY.		85
	REFERE	ENC	ES	86

APPENDIX A – DATASHEET	88
A.1. Angular Contact Ball Bearing	88
A.2 Pillow Block Catalog	91
A.3. Proximity Switch Datasheet	93
A.4. Electric Capacitive Switch	95
A.5. Photoelectric Sensor	96
A.6. LM555	102
A.7. TIP 31C Power Transistor	106
APPENDIX B – I/O LIST	109
B.1. I/O List of Capping Machine	109
B.2. I/O List of Packaging Machine	110
APPENDIX C – BILL OF MATERIALS AND COMPONENTS	112
C.1. Bill of Capping Machine	112
C.2. Bill of Packaging Machine	113
C.3. Bill of Modular Instruments	114
C.4. Bill of Mobile Table	114
C.5. Total Bill of Materials and Components	115
Curiculum Vitae	116