DESIGN AND IMPLEMENTATION OF FUZZY AUTO-BALANCE CONTROL FOR BIPEDAL ROBOT

Ву

Adrian Felix Sutanto

1-1108-003

A Thesis submitted In Partial Fulfillment of the Requirements for

BACHELOR OF SCIENCE

DEPARTMENT OF MECHATRONICS ENGINEERING

FACULTY OF ENGINEERING

SWISS GERMAN UNIVERSITY

SWISS GERMAN UNIVERSITY

EduTown BSDCity Tangerang 15339 INDONESIA

Telp. +62 21 3045 0045 Fax. +62 21 3045 0001 E-mail: info@sgu.ac.id www.sgu.ac.id

2012
Revision after the Thesis Defense on 19 July 2012

STATEMENT BY THE AUTHOR

I hereby declare that this submission is my own work and to the best of my knowledge, contains no material previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma at any educational institution, except where due acknowledgement is made in the thesis.

	Adrian Felix Sutanto	Date	
	Approved by:		
M	Advisor, Dr. Ir Prianggada Indra Tanaya, MME	Date	Γ
	Co-Advisor, Dipl. –Ing, Henricus Riyanto Hendradji, M,Sc	Date	
	Chairman of the Examination Steering Committee	Date	

ABSTRACT

DESIGN AND IMPLEMENTATION OF FUZZY AUTO-BALANCE CONTROL FOR BIPEDAL ROBOT

By

Adrian Felix Sutanto

SWISS GERMAN UNIVERSITY Bumi Serpong Damai

Dr. Ir Prianggada Indra Tanaya, MME, Advisor Dipl. –Ing, Henricus Riyanto Hendradji, M,Sc, Co-Advisor

The purpose of this thesis project is to develop a prototype of Fuzzy Logic Controller as auto-balance system in the bipedal robot. To achieve the goal, there are few things to be considered. The most suitable parameter for the fuzzy logic controller must be determined first. Analysis and refinement in three aspects related to the development of the balance control system in the bipedal robot will also be discussed. The fuzzy logic design will be simulated using MATLAB before the applied to the bipedal robot system.

Keywords: Fuzzy Logic, Bipedal Robot, Auto-Balance

Adrian Felix Sutanto

DEDICATION

I dedicate this thesis to the Lord GOD Almighty, my parents, my advisor and myself.

Adrian Felix Sutanto

ACKNOWLEDGMENTS

I give thank to the Lord GOD Almighty for His grace and mercy through this thesis work.

A Special thanks for my parents for the support and prayer for the completion of this thesis.

My deepest gratitude towards my advisor, Dr. Ir. Prianggada Indra Tanaya, MME for the encouragement and guidance for the completion of this thesis work.

Big thanks to my co-advisor, Dipl. –Ing, Henricus Riyanto Hendradji, M,Sc for the help and advices in solving the problems of this thesis work.

I would like to thank my colleague, Gerald Wahyudi Setiono for the cooperation in the construction and development of the bipedal robot from the 7th semester MSD project until the completion of this thesis work.

My sincere gratitude to my senior, Albert Christian for the help and advice in the manufacturing of the bipedal robot.

My warm gratitude to my senior, Ferdian Adi Pratama for the help and advice in the development of the fuzzy logic system.

My warm thanks for Farika Myrna Listyo for the support and encouragement throughout the writing of this thesis.

My thanks to my senior, David Kurniawan for the inspiration to develop a bipedal robot.

Lastly, I would like to thank to my fellow classmates and friends in SGU for the support throughout this thesis work.

R

TABLE OF CONTENTS

STATE	MENT BY THE AUTHOR	2
ABSTR	ACT	3
DEDIC	ATION	4
ACKNO	DWLEDGMENTS	5
CHAPT	ER 1 – INTRODUCTION	.13
1.1.	Background	.13
1.2.	Thesis Purpose	.13
1.3.	Thesis Scope	.14
1.4.	Thesis Limitations	.14
1.5.	Problem Identification	.14
 1.6.	Thesis Structure	.15
СНАРТ	ER 2 – LITERATURE REVIEW	.16
2.1.	Introduction	.16
2.2.	Humanoid Robot	.16
2.3.	Bipedal Design	.17
2.3	3.1. Supported Bipedal Robot	.17
2.3	3.2. ARCher Bipedal Robot	.20
2.4.	Walking Patterns	.23
2.5.	Fuzzy Logic Control in Bipedal Robot	.30

2.6. Concluding Remarks	33
CHAPTER 3 – METHODOLOGY	34
3.1. Introduction	34
3.2. Electrical Aspect	35
3.2.1. Electrical Design Considerations and Limitations	36
3.2.2. Electrical Design Modification	38
3.3. Mechanical Aspect	39
3.3.1. Mechanical Design Considerations and Limitations	s40
3.3.2. Mechanical Design Modification	41
3.3.3. Mechanical Calculation	43
3.3.4. Motion Planning	46
3.4. Software Aspect	48
3.4.1. Software Limitations and Assumptions	KSIIV
3.4.3. Fuzzy Logic	52
3.4.4. Fuzzy Logic Controller Design	55
a. Fuzzy Logic First Design	56
b. Fuzzy Logic Second Design	59
c. Fuzzy Logic Third Design	61
3.4.5. Programming	63
a. Gait Motion Programming	63

b. Fuzzy Logic Programming65
3.5. Concluding Remarks69
CHAPTER 4 – RESULT & DISCUSSION70
4.1. Introduction70
4.2. Electrical Aspect Evaluation70
4.2.1. Problem and Refinement
4.2.2. Results71
4.3. Mechanical Aspect Evaluation71
4.3.1. Problem and Refinement71
4.3.2. Result72
a. Experiment 173
b. Experiment 275
c. Experiment 3
e. Experiment 581
4.3.3. Mechanical Evaluation Conclusion82
4.4. Software Aspect Evaluation84
4.4.1. Gait Motion Programming Evaluation84
4.4.2. Balancing Motion and Fuzzy Logic Programming Evaluation88
a. Simulation 189
b. Simulation 290

c. Simulation 392	2
d. Simulation 493	3
e. Simulation 599	5
f. Simulation 696	6
g. Simulation 798	8
h. Conclusion 99	9
4.4.3. Study Case100	0
4.5. Walking and Tilting Program Test Result102	2
4.6. Concluding Remarks105	5
CHAPTER 5 – CONCLUSION AND RECOMMENDATION106	6
5.1. Conclusion100	6
5.2. Future Development107	7
GLOSSARY108	8
REFERENCES109	9
APPENDIX110	0
CURRICULUM VITAE	2