AUTOMATED GUIDED VEHICLE (AGV) DESIGN, DEVELOPMENT & PROTOTYPING FOR MATERIAL HANDLING EQUIPMENT WITH SYSTEM ENGINEERING APPROACH

By

Bayu Suwargo 11210095

BACHELOR'S DEGREE in

INDUSTRIAL ENGINEERING ENGINEERING & INFORMATION TECHNOLOGY

SWISS GERMAN UNIVERSITY EduTown BSD City Tangerang 15339 Indonesia

August 2016

Revision after Thesis Defense on July 21st 2016

STATEMENT BY THE AUTHOR

I hereby declare that this submission is my own work and to the best of my knowledge, it contains no material previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma at any educational institution, except where due acknowledgement is made in the thesis.

	Bayu Suwargo	
	Student	Date
	Approved by:	
	Ir. Invanos Tertiana, MBA	
	Thesis Advisor	Date
V	ISS GERMAN UNIV	ERSIT
	Setijo Awibowo, MM	
	Thesis Co-Advisor	Date
	Dr. Ir. Gembong Baskoro, M. Sc.	
	Dean	Date

ABSTRACT

AUTOMATED GUIDED VEHICLE (AGV) DESIGN, DEVELOPMENT & PROTOTYPING FOR MATERIAL HANDLING EQUIPMENT WITH SYSTEM ENGINEERING APPROACH

By

Bayu Suwargo, Student Ir. Invanos Tertiana, MBA, Advisor Setijo Awibowo, MM, Co-Advisor

SWISS GERMAN UNIVERISTY

There is no methodology that fit every possible situation and acceptable globally said by one of the Systems engineering guru named Kossiakoff. This thesis tries to develop a methodology that suitable for developing Automated Guided Vehicle (AGV) as it System of Interest (SoI) in the university environment. The methodology takes reference from the famous Vee-Modell System Development, NASA System Design Processes Relationship and Model-Based System Engineering Approach. The Methodology name is RELI System Design Methodology (RELI) which has tagline "The System Design you created is Reconfigurable, The Methodology you followed is Linear". Inside there are explanation of defining operational concept (OpsCon) using use case diagram, capture & modify existing system design solution with composite association and generalization relationship of block definition diagram and creating Functional Architecture with SysML internal block diagram. System engineering truly help the realization process of AGV however it should be carried out with the ability to scope and freeze the possible work to be done in the context of overall goal & limitation.

Keywords: System Engineering, RELI System Design Methodology, Vee-Model, Kossiakoff, Model-Based System Engineering, NASA System Design Processes Relationship, SysML.

SWISS GERMAN UNIVERSITY

DEDICATION

I dedicate this thesis to my Mum, Dad, Brother, Advisor, Fellow Students and You

ACKNOWLEDGEMENTS

First I would like to give appreciation and thankfulness to my mum, dad and big brother who always wanted me to finished my bachelor degree and see me graduate especially my mum Estu D. Winarni who came over and personally gave assistance and made sure that I keep on the *right* track.

Next, I would like to acknowledge my thesis advisor; co-advisor and lecturers that help me both in the technical and non-technical aspect of this thesis work especially my thesis advisor Ir. Invanos Tertiana, MBA who have the patience to not give the direct answers but guide through hints, clues and analogies.

Next, I would like to acknowledge fellow students of Industrial Engineering batch 2010 who already graduated before and asked me when I would like to join them and batch 2012 especially those included in Infiniti Group Project for showing fun and energize environment.

Next, I would like to give credits to those whose works has been cited, referenced and/or inspired be it organizations or gurus that makes me understand a bit about Systems Engineering principle especially Forsberg, Kossiakoff, Delligatti, Friedenthal, Gentry Lee, NASA, INCOSE, OMG & PMI.

Last but not least, I would like to give appreciation to you who already give the effort to open up my works and read until the bottom of acknowledgement section or even until the last page of this thesis work.

TABLE OF CONTENTS

Page
STATEMENT BY THE AUTHOR2
ABSTRACT
DEDICATION
ACKNOWLEDGEMENTS6
TABLE OF CONTENTS7
LIST OF FIGURES
LIST OF TABLES
CHAPTER 1 - INTRODUCTION14
1.1 Background14
1.2 Problem Statement
1.4 Hypothesis15
1.5 Thesis Scope15
1.6 Thesis Limitation15
1.7 Significance of Study15
1.8 Thesis Structure
CHAPTER 2 - LITERATURE REVIEW17

	2.1	Literature Review Part Initial Exploratory Research	
		2.1.1 Systems Engineering	18
		2.1.1.1 Systems-Engineering Lifecycle (SEL)	.19
		2.1.2 Project Management	25
		2.1.2.1 Project Charter	.25
		2.1.2.2 Work Breakdown Structure	.26
		2.1.2.3 Project Cycle	.26 R
		2.1.3 Material Handling	26
		2.1.4 Automated Guided Vehicle	26
	СНА	APTER 3 - RESEARCH METHODOLOGY	
	3.1	RELI System Design Methodology	
		3.1.1 Initiating Process Group (IPG)	31
QV/I	C	3.1.2 Planning Process Group (PPG)	31
9111	D	3.1.3 Executing Process Group (EPG)	32
		3.1.4 Monitoring & Controlling Process Group (MCPG)	33
		3.1.5 Closing Process Group (CPG)	34
	СНА	APTER 4 – RESULTS AND DISCUSSIONS	
	4.1	Initiating Process Group	
		4.1.1 Initiating Project with Project Charter	35
	4.2	Planning Process Group	

0

4.2.1 System Engineering Work Packages (SEWP)			
	4.2.1.1	The Mindset behind SEWP: System Engineering Lifecycle	(SEL) 37
4.2.1.2 (SEM)		The Mindset behind SEWP: System Engineering Method 41	dology
	4.2.2 Syste	em Engineering Work Templates (SEWT)	45
	4.2.2.1 Approach	The Mindset behind SEWT: Model-Based System Engin	eering 45
	4.2.2.2	The Mindset behind SEWT: Template Method (TM)	50 R
4.3	Executing Pro	ocess Group	53
	4.3.1 Syste	em Level-X Requirement Definition Results & Discussion	53
	4.3.2 Ops0	Con Analysis & Definition with SysML Use Case Diagram	55
	4.3.3 Ops0	Con Analysis & Definition with SysML internal block diagra	m62
	4.3.4 Phys	sical Architecture Analysis & Definition	63
SWIS	4.3.5 The Realization	result of SEM, SEL part ADD & MBSEA Guidance on	AGV 68
	4.3.5.1	AGVS Product Breakdown Structure	68
	4.3.5.2	Integration Plan for AGVS	71
	4.3.5.3	ADD Progress Matrix	71
СН	IAPTER 5 -	CONCLUSIONS AND RECCOMENDATIONS	74
5.1	Conclusion		74
5.2	Recommenda	tion for Further Studies	74

AUTOMATED GUIDED VEHICLE (AGV) DESIGN, DEVELOPMENT & PROTOTYPING FOR MATERIAL HANDLING EQUIPMENT WITH SYSTEM ENGNEERING APPROACH	Page 10 of 110
GLOSSARY	75
REFERENCES	76
APPENDICES	
CURRICULUM VITAE	110

