DESIGNING AND CONSTRUCTING AN AUTOMATED BOTTLE CRUSHER

By

Dionisius Steven Trisnadi
1-1112-032

BACHELOR’S DEGREE
in

MECHANICAL ENGINEERING-MECHATRONICS CONCENTRATION
FACULTY OF ENGINEERING AND INFORMATION TECHNOLOGY

SWISS GERMAN UNIVERSITY
EduTown BSD City
Tangerang 15339
Indonesia

August 2016

Revision after the Thesis Defense on 26 July 2016
STATEMENT BY THE AUTHOR

I hereby declare that this submission is my own work and to the best of my knowledge, it contains no material previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma at any educational institution, except where due acknowledgement is made in the thesis.

Dionisius Steven Trisnadi
Student

Approved by:

Mr. Erikson Sinaga, S.T., M.Kom.
Thesis Advisor

Dr.Ir.Gembong Baskoro,M.Sc
Dean

Dionisius Steven Trisnadi
ABSTRACT

DESIGNING AND CONSTRUCTING AN AUTOMATED BOTTLE CRUSHING

By

Dionisius Steven Trisnadi
Mr. Erikson Sinaga, S.T., M.Kom, Advisor

SWISS GERMAN UNIVERSITY

The concept of this machine is as a project from PT. Tayoh Sarana Sukses to process plastic bottles become plastic resin and also to solve the problem of plastic waste, and the focus of the project is on crushing the plastic bottles and monitoring. This machine is the next station of bottle sorting station. After the sorting process, the bottles will go to crushing station one by one approximately every 3 seconds. First the bottle will be detect by the sensor, it uses to count number of bottle going to this station each day. Then the plastic’s knife will crush the bottle and the result after crushing can be recycled into raw material for making plastics.

Keywords: Bottle Crusher, Bottle Plastic, Plastic Recycling, Automated Bottle Crusher
DEDICATION

I dedicate this thesis to Jesus Christ who gives me strength in all I do and make it all possible. To my parents and families who give me support in finishing my study, to lectures, friends which help me in doing this thesis, also to the future engineer who will continues the spirit of engineering and give the color to the world.
ACKNOWLEDGEMENTS

First of all, I would like to show my gratitude to Jesus Christ who has blessed and amazing grace, so I can carry on even in my darkest hour. This thesis would not be finished without His compassion.

I would like to express my deep gratitude and appreciation to my advisor, Mr. Erikson Sinaga, S.T., M.Kom. for the continuous support in completing my thesis, for his assistance, motivation, advice, patience, and excellent knowledge. He helps me a lot in doing my research and writing this thesis. Thanks also to my friend Michael Andhika, Fernando Yoserizal, Robert Tjandradjaya, Sandy Kurniawan, Valencia Sutjiono, Antonius Alex, Jimmy Kurnia, Kevin Susanto, and Regina Christiany for their help when I met a problem during the process of this thesis Work.

Many thanks to my parents Johannes Julianto Trisnadi and Lanny Sutjipto to be there for me, support me and warn me to finish my thesis work as fast as I could and also support my financial for this thesis work. Thanks also to my sister to always support me and encourage me.

Another appreciation is pointing to Mr. Fredi and Mr. Kamiran who helping me in mechanical design. I learn a lot thing in using Solid Work to finish my design. This grateful also dedicate to other lectures that I cannot be named one by one

Special thanks to PT. Tayoh Sarana Sukses for supporting my thesis and thanks for the project that is given. The worker help me to do many research and knowledge about machines in industries.

Many thanks to all my colleagues in Mechatronics Batch 2012. Without all those listed above, this thesis would not have been completed on time.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATEMENT BY THE AUTHOR</td>
<td>2</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>3</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>5</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>6</td>
</tr>
<tr>
<td>CHAPTER 1 – INTRODUCTION</td>
<td>14</td>
</tr>
<tr>
<td>1.1. Background</td>
<td>14</td>
</tr>
<tr>
<td>1.2. Thesis Purpose</td>
<td>15</td>
</tr>
<tr>
<td>1.3. Significance of Study</td>
<td>15</td>
</tr>
<tr>
<td>1.4. Thesis Scope</td>
<td>15</td>
</tr>
<tr>
<td>1.5. Thesis Limitation</td>
<td>15</td>
</tr>
<tr>
<td>1.6. Thesis Organization</td>
<td>16</td>
</tr>
<tr>
<td>CHAPTER 2 - LITERATURE REVIEW</td>
<td>17</td>
</tr>
<tr>
<td>2.1. Introduction</td>
<td>17</td>
</tr>
<tr>
<td>2.2. Plastic Recycling</td>
<td>17</td>
</tr>
<tr>
<td>2.3. Induction Motor</td>
<td>19</td>
</tr>
<tr>
<td>2.3.1. Induction Motor 1 Phase</td>
<td>19</td>
</tr>
<tr>
<td>2.3.2. AC Motor 3 Phase</td>
<td>19</td>
</tr>
<tr>
<td>2.4. Ultrasonic Distance Measurement</td>
<td>21</td>
</tr>
<tr>
<td>2.5. Machinery Steel</td>
<td>22</td>
</tr>
<tr>
<td>2.5.1. S45C</td>
<td>22</td>
</tr>
<tr>
<td>2.6. Previous Projects</td>
<td>22</td>
</tr>
<tr>
<td>2.6.1. Design and Development of a Plastic Bottle Crusher</td>
<td>22</td>
</tr>
<tr>
<td>2.6.2. Automatic Plastic Crusher Apparatus</td>
<td>24</td>
</tr>
<tr>
<td>2.6.3. Perencanaan Mesin Pencacah Sampah Type Crusher</td>
<td>26</td>
</tr>
<tr>
<td>2.6.4. Rancang Bangun Mesin Pencacah Sampah Plastik</td>
<td>28</td>
</tr>
<tr>
<td>CHAPTER 3 – METHODOLOGY</td>
<td>31</td>
</tr>
<tr>
<td>3.1. System Overview</td>
<td>31</td>
</tr>
<tr>
<td>3.2. System Breakdown Structure</td>
<td>32</td>
</tr>
<tr>
<td>3.3. Mechanical Part</td>
<td>32</td>
</tr>
<tr>
<td>3.3.1. Crusher Unit</td>
<td>33</td>
</tr>
<tr>
<td>3.3.1.1. Feeding Hopper</td>
<td>34</td>
</tr>
<tr>
<td>3.3.1.2. Rotating Blade Frame</td>
<td>35</td>
</tr>
<tr>
<td>3.3.1.3. Rotating Blade</td>
<td>36</td>
</tr>
</tbody>
</table>
3.3.1.4. Fixed Blade ... 37
3.3.1.5. Crusher Body .. 38
3.3.1.6. Motor .. 38
3.3.1.7. Pulley .. 41
3.3.1.8. Flywheel ... 42
3.3.1.9. V - Belt .. 42
3.3.1.10. Bearing ... 43
3.3.1.11. Shaft ... 43
3.3.1.12. Filter Holder .. 46
3.3.1.13. Filter ... 46
3.3.1.14. Pulley Cover .. 47
3.3.1.15. Flywheel Cover .. 47
3.3.1.16. Storage ... 48
3.3.2. Conveyor Unit .. 48
 3.3.2.1. Frame .. 48
 3.3.2.2. Conveyor Belt .. 51
 3.3.2.2. Conveyor Motor .. 51
 3.3.2.3. Speed Reducer ... 54
 3.3.2.4. Pulley ... 55
 3.3.2.5. Motor Capacitor ... 55
3.4. Electrical Part .. 56
 3.4.1. AC .. 56
 3.4.1.1. Contactor ... 57
 3.4.1.2. Overload ... 58
 3.4.1.3. MCB ... 58
 3.4.1.4. Control Panel ... 59
 3.4.1.5. Limit Switch ... 60
 3.4.2. DC ... 61
 3.4.2.1. Controller .. 61
 3.4.2.2. Switch .. 62
 3.4.2.3. Sensor ... 63
 3.4.2.4. Adaptor 9V ... 64
 3.4.2.5. RTC DS1307 ... 64
 3.4.2.6. SD Card Module .. 66
 3.4.2.7. BC 547 ... 67
3.5. Program Design ... 68
 3.5.1. Counter Program ... 69
 3.5.2. Data Control ... 71

CHAPTER 4 – RESULTS AND DISCUSSIONS .. 72
4.1. Introduction .. 72
4.2. Mechanical Result .. 72
4.3. Electrical Result ... 77
4.4. Subsystem Testing .. 79
 4.4.1. Crusher Testing ... 79
 4.4.2. Conveyor Testing .. 85
 4.4.3. Sensor Testing .. 85