SYNTHESIS OF PARACETAMOL DERIVATIVES USING THE PEROXIDASE ENZYME FROM CAULIFLOWER

By

Yola Krisna 14111006

BACHELOR'S DEGREE

in

CHEMICAL ENGINEERING – PHARMACEUTICAL ENGINEERING CONCENTRATION

FACULTY OF LIFE SCIENCES AND TECHNOLOGY

SWISS GERMAN UNIVERSITY
EduTown BSD City
Tangerang 15339
Indonesia

August 2015

Revision after the Thesis Defense on 6 August 2015

STATEMENT BY THE AUTHOR

I hereby declare that this submission is my own work and to the best of my knowledge, it contains no material previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma at any educational institution, except where due acknowledgement is made in the thesis.

	Yola Krisna	
	Student	Date
	Approved by:	
	Hery Sutanto, M.Si.	
SW	Thesis Advisor	Date
	Yulia Anita, M.Sc.	
	Thesis Co-Advisor	Date
	Dr. DiplIng. Samuel P. Kusumocahyo	
	Dean	Date

ABSTRACT

SYNTHESIS OF PARACETAMOL DERIVATIVES USING THE PEROXIDASE ENZYME FROM CAULIFLOWER

Bv

Yola Krisna Hery Sutanto, M.Si, Advisor Yulia Anita, M.Sc, Co-Advisor

SWISS GERMAN UNIVERSITY

Paracetamol or acetaminophen is classified as a mild analgesic and commonly used as an active pharmaceutical ingredient as a pain reliever and fever reducer and other minor aches and pains. Unfortunately, a little overdose of paracetamol may cause hepatoxocity or liver injury which lead to liver failure, liver transplant, or death. Reduction of paracetamol by cytochrome P-450 enzymes in the liver cells are produce NAPQI (*N-acetyl-p-benzoquinone imine*), a toxic metabolite that may cause a liver tissue injury. To prevent an oxidation of paracetamol, a dimer of paracetamol was synthesize to protect paracetamol from being oxidized. An enzymatic oxidative coupling synthesis reaction may produce several possible paracetamol derivatives products besides the dimeric compound as our main interest. Peroxidase enzyme as a catalyst was extracted from cauliflower, part of Brassicaceae family. A cation radical compound as the product of the reaction between peroxidase enzyme and hydrogen peroxide, initiates the dimerization of paracetamol through termination of the radicals. Based on the antioxidant activity assay using DPPH method, the antioxdidant activity of dimer of paracetamol is higher than paracetamol.

Keywords: Paracetamol, synthesis reaction, dimerization, dimer of paracetamol, peroxidase enzyme, antioxidant activity, cauliflower.

DEDICATION

I dedicate this thesis for my parents, my brother and everyone who has supported and encourage me during the work.

ACKNOWLEDGEMENTS

This thesis was completed with the help and guidance from a lot of individuals who gave their precious time, knowledge, and contribution to assist me from the very beginning until completion of my thesis.

First, I would like to thank God for His blessing in every single moment of my life. It was your love and mercy that allowed me the opportunity to live my life.

I would also like to thank Mr. Hery Sutanto, M.Si. as my thesis advisor for his knowledge, guidance, support, inspiration, and assistance throughout my thesis. I am very pleased to have you as my thesis advisor. Also, I would like to thank Mrs. Yulia Anita, M.Sc. as my thesis co-advisor for her time, support, guidance, assistance, and providing me the raw materials and equipment.

Furthermore, I would also like to thank Mr. Agung Margiyanto, Mr. Tabligh Permana and Ms. Sivya Yusri for their knowledge, assistance, help in the lab and problem solving. I would also like to thank all of the Life Sciences staff and Life Sciences 2011 colleagues especially Pharmaceutical Engineering 2011 class for the help and support during my thesis.

Thank you, Rachel Amanda, Jane Tanzil, and Michelle as my thesis partners, for your companionship, help, advice, and support from the beginning until the end of this thesis.

I can never thank my parents, my brother, and all my family enough wherever they for their love, blessings, advice, and support they always give me.

TABLE OF CONTENTS

		Page
STAT	ΓΕΜΕΝΤ BY THE AUTHOR	2
ABS	TRACT	3
DED	ICATION	5
ACK	NOWLEDGEMENTS	6
TAB	LE OF CONTENTS	7
	OF FIGURES	
LIST	OF TABLES	10
СНА	PTER 1 - INTRODUCTION	11
1.1	Background	11
1.2.	Research Problems	12
1.3.	Research Objectives	12
1.4	Significance of Study	12
1.5	Research Question	
1.6	Hypothesis	12
CHA	PTER 2 - LITERATURE REVIEW	13
2.1.	Paracetamol	13
2.2	Peroxidase Enzyme	14
2.3	Peroxidase Enzyme Volumic Activity Analysis	15
2.4	Specific Activity Determination and Lowry Method	16
2.5	Synthesis Process by Oxidative Coupling	16
2.6	Ultraviolet-Visible Spectrophotometer	17
2.7	Thin Layer Chromatography	18
2.8	Column Chromatography	18
2.9	Liquid Chromatography Mass Spectrometer	19
2.10	Antioxidant Activity Assay	20
CHA	PTER 3 – RESEARCH METHODS	21
3.1	Venue and Time	21
3.2	Materials and Equipment	21
3.3	Research procedure	
3.3.1	Preliminary Research	22
3.3.1	.2 Extraction of the Peroxidase Enzyme in Cauliflower	22

3.3.1.3 Enzyme Volumic Activity Analysis	22
3.3.1.4 Specific Activity Determination	23
3.1.1.5 Optimum Crude Enzyme Condition	24
3.3.2 Design of Experiments	24
3.3.3 Experimental Procedure	25
3.3.3.1 Crude Enzyme from Cauliflower Preparation	25
3.3.2 Synthesis Reaction	25
3.3.4 Analysis Procedure	25
3.3.5 Separation using Column Chromatography	25
3.3.6 Antioxidant Activity	26
CHAPTER 4 – RESULTS AND DISCUSSIONS	28
4.1 Preliminary Research	28
4.1.1 Enzyme Volumic Activity Analysis	28
4.1.2 Specific Activity Determination	30
4.1.3 Optimum Crude Enzyme Condition	31
4.2 Synthesis Reaction Analysis	33
4.3 Column Chromatography Result	36
4.4 Liquid Chromatography Mass Spectrometer Result	39
4.5 Dimerization and Trimerization Mechanism	43
4.6 Antioxidant Activity Result	46
CHAPTER 5 – CONCLUSIONS AND RECCOMENDATIONS	50
5.1 Conclusions	50
5.2 Recommendations	50
APPENDICES	
REFERENCES	
CUDDICUI UM VITAE	67