IMPROVING PRODUCTIVITY IN TRIMMING X-CLASS ASSEMBLY LINES BY IMPLEMENTING LINE BALANCING METHODOLOGY AND MOTION WASTE REDUCTION

By

AKMAL NOVANDRA DWINIYANTO 1-1307-026

BACHELOR'S DEGREE in

INDUSTRIAL ENGINEERING
FACULTY OF ENGINEERING AND INFORMATION TECHNOLOGY

SWISS GERMAN UNIVERSITY

SWISS GERMAN UNIVERSITY
The Prominence Tower
Jalan Jalur Sutera Barat No.15, Alam Sutera
Tangerang, Banten 15143 - Indonesia

August 2017

Revision after the Thesis Defense on 24 July 2017

Akmal Novandra Dwiniyanto

STATEMENT BY THE AUTHOR

	I hereby declare that this submission is my own work and to the best of my				
	knowledge, it contains no material previously published or written by another person,				
	nor material which to a substantial extent has been accepted for the award of any other				
	degree or diploma at any educational institution, except where due acknowledgement				
	is made in the thesis.				
	Akmal Novandra Dwiniyanto				
	Student	Date			
	Approved by:				
SW	Ir. Triarti Saraswati, M.Eng	RSITY			
	Thesis Advisor	Date			
	Ir. Setijo Awibowo, MM				
	Thesis Co-Advisor	Date			
	Dr. Ir. Gembong Baskoro, M.Sc.				
	Dean	Date			

ABSTRACT

IMPROVING PRODUCTIVITY IN TRIMMING X-CLASS ASSEMBLY LINES BY IMPLEMENTING LINE BALANCING METHODOLOGY AND MOTION WASTE REDUCTION

By

Akmal Novandra Dwiniyanto Ir. Triarti Saraswati, M.Eng, Advisor Ir. Setijo Awibowo, MM, Co-Advisor

SWISS GERMAN UNIVERSITY

This research is based on the case study in trimming assembly line in PT Mercedes-Benz Indonesia. It focuses on how line efficiency can be optimized by eliminating overwork and waste of movement so that the line can run smoothly. Based on daily report, the line capacity has not been able to meet the demand target. After analysis and discussion, this failure is understood to be due to 2 main reasons; unbalanced workload and material handling time that causes cycle time fails to meet the takt time target. Therefore, the unbalanced workload problem is solved by using the most suitable line balancing method, while the cycle time will be reduced by re-designing the workstations. The line balancing methods are Kilbridge and Wester Method, and Manual Line Balancing, while to re-design workstations, basic ergonomic principle is used. In the end, the initial and after improved condition will be compared to a system modelling simulation by using Tecnomatix Plant Simulation software.

Keywords: Assembly Line, Productivity, Line Balancing, Kilbridge and Wester, Tecnomatix Plant Simulation

DEDICATION

I dedicate this thesis

To Allah SWT for turning every difficulty to convenience,

To my beloved parents for their continuous support,

To my lecturers for their advices and guidance,

And to all my friends for the motivation and support

SWISS GERMAN UNIVERSITY

ACKNOWLEDGEMENTS

Foremost, I would like to thank Allah SWT that has given me strength and convenience during this thesis project.

Special thanks to my parents, Thotok Widjajanto and Deasy Agustin Sularni, for continuously providing me support with motivation and prayer.

I would like to express my sincere gratitude to my advisor Ir. Triarti Saraswati, M.Eng and my co-advisor Ir. Setijo Awibowo, MM, for the continuous support of my study and research, for their patience, motivation, enthusiasm, and immense knowledge. Their guidance helped me in all the time of research and writing of this thesis.

Besides my advisor and co-advisor, I would like to thank Mr. Wahyu Ricardo for giving me the opportunity to conduct internship in PT. Mercedes-Benz Indonesia and let me work with his group, provide me with all of the information I needed, and leading me working on this exciting project.

Last but not the least, I would like to thank all my best friends in Industrial Engineering 2013 for supporting me throughout the good and hard times in Swiss German University. Thank you for all of the unforgettable moment we spent together.

TABLE OF CONTENTS

		Page	
STA	ΓΕΜΕΝΤ BY THE AUTHOR	2	
ABS	TRACT	3	
DED	ICATION	5	
ACK	NOWLEDGEMENTS	6	
LIST	OF FIGURES	9	
LIST	OF TABLES	10	
СНА	PTER 1 – INTRODUCTION	11	(R
1.1.	Background	11	
1.2.	Research Problems.	13	
1.3.	Research Objectives		
1.4.	Significance of Study	13	
1.5.	Thesis Scope and Limitation	13	
1.6.	Thesis Structure	14	
СНА	PTER 2 - LITERATURE REVIEW	15	
2.1.	Automotive Industry	15	
2.2.	Lean Manufacturing.		
2.3.	Lean and Kaizen Approach	16	
2.4.	Productivity Measures	17	
2.5.	Assembly Line	18	
2.6.	Theoretical Analysis of Assembly Lines	19	
	2.6.1. Line Balancing	•••••	20
2.7.	Time Study	21	
	2.7.1. Motion Study		22
СНА	PTER 3 – RESEARCH METHODS	25	
3.1.	Problem Identification.	26	
	3.1.1. Current State Analysis		26
	3.1.2. Evaluation of Line Performance		26
	3.1.3. Gap Analysis		28
3.2.	Literature Review	28	

AND MOTION WASTE REDUCTION

711110		BTE REBUCTION		
3.3.	Data	Collection	28	
3.4.	Data	Processing	30	
3.5.	Data	Analysis	30	
	3.5.1.	Line Balancing.		31
	3.5.2.	Trolley and Composition Re-arrangement		32
	3.5.3.	Gravity Rack Proposal		32
3.6.	Vali	dation	33	
3.7.	Con	clusion & Recommendations	33	
CHA	APTER 4	- RESULTS AND DISCUSSIONS	34	6
4.1.	Con	pany Profile	34	(R
4.2.	Ove	rview of Product	35	
4.3.	Prob	lem Identification	35	
	4.3.1.	Data Processing.		40
	4.3.2.	Working Time		41
	4.3.3.	Workstations Cycle Time		41
4.4.	Task	Distribution Analysis	42	
4.5.	Eval	uation of Current Line Performance	46	
	4.5.1.	Line Balancing Using Kilbridge and Wester Method		47
	4.5.2.	Manual Line Balancing		55
	4.5.3.	Trolley and Composition Rearrangement		63
4.6.	Grav	vity Rack Proposal		
4.7.	Con	cluding Remark	84	
CHA	APTER 5	– CONCLUSIONS AND RECOMMENDATIONS	85	
5.1.	Con	clusions	85	
5.2.	Reco	ommendations & Further Research	86	
	5.2.1.	Recommendations		86
	5.2.2.	Further Research.		87
REF	ERENC	ES	88	
APP	APPENDICES90			
APP	ENDIX .	A – MANUAL LINE BALANCING STATION 06 – STATION 07	90	
APP	ENDIX	B – TROLLEY AND COMPOSITION REARRANGEMENT	97	
CUF	RRICULI	JM VITAE	105	