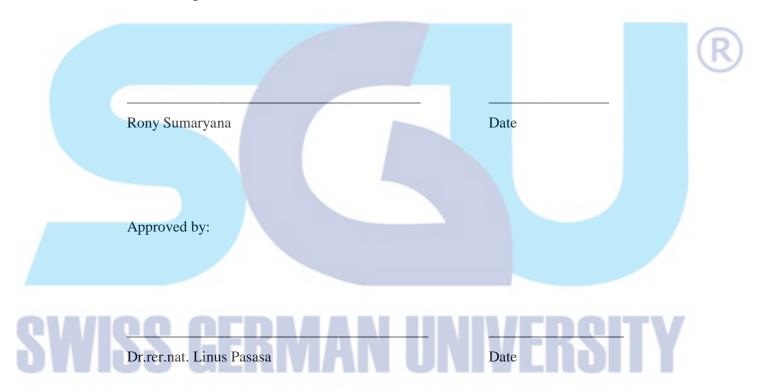

ANALYSIS OF ECO-EFFICIENCY AND ECONOMIC OF AN ENERGY CONVERSION PROJECT IN PT. X



SWISS GERMAN UNIVERSITY Campus German Centre Bumi Serpong Damai – 15321 Island of Java, Indonesia <u>www.sgu.ac.id</u>

September 2008

STATEMENT BY THE AUTHOR

I hereby declare that this submission is my own work and to the best of my knowledge, it contains no material previously published or written by another person, not material which to a substantial extent has been accepted for the award of may other degree or diploma at any educational institution, except where due acknowledgement is made in the thesis.

Chairman of the Examination Steering Committee

Date

ABSTRACT

ANALYSIS OF ECO-EFFICIENCY AND ECONOMIC OF AN ENERGY CONVERSION PROJECT IN PT. X

By

Rony Sumaryana

SWISS GERMAN UNIVERSITY

Bumi Serpong Damai

Dr.rer.nat. Linus Pasasa, Thesis advisor

The purposes of this study are two folds. The first is to evaluate effectiveness of company investment to energy conversion project from fuel oil and LPG into Natural Gas (NG) in PT. X. The second purpose is to evaluate the impact of energy conversion to environment which was not included in the project proposal. Net Present Value (NPV), Internal Rate of Return (IRR) and Payback Period (PP) are used as investment appraisal tools with sensitivity evaluation such as appraisal on fuel price and production rate changes. Eco-efficiency which represents the impact to environment is calculated by comparing product's value over load to environment. Product's value is represented by product volume and load to environment is represented by CO₂ emission. Non-Product Output (NPO) analysis method was used to identify the non-product output by value and volume. By using 31.8 % production rate, the calculation was resulted at NPV is equal to 0, IRR 18 % and PP 5 years, while at 100 % production rate the NPV is USD 1,536 million, IRR 102 % and PP 1 year. Therefore the investment is effective when production rate is 31.8 % or higher. Eco-efficiency is decreased from 4.76 to 4.69 or equal to 1.47 % which caused by increasing of carbon dioxide emission. The analysis show that energy consumption of natural gas for each metric ton product (1.91 MMBTU/MT) is almost 23 % higher than energy consumption from fuel oil plus LPG (1.47 MMBTU/MT).

This eco-efficiency reduction does not meet the expectation so it is recommended to conduct further evaluation such as root-cause analysis.

DEDICATION

I dedicate this thesis to my father -who already in heaven- and my mother for their never ending struggle in their whole life just to keep me alive and do the better things. To my lovely children : *Niza, Aria* and *Rafi* for keeping me the spirit even only giving it through their eyes and to my wife *Teh Yayat* for being patient while I was not able to give her enough time for being close with her. To *Cherie* who always inspire me and gives more even for only get less.

SWISS GERMAN UNIVERSITY

ACKNOWLEDGMENTS

The author wishes to be able to give the best contribution for the readers, especially to the company who has supported the study at Swiss German University (SGU) Bumi Serpong, Indonesia. It is realized this is not an easy task to complete the thesis without any helps from others.

I would like to deliver my appreciation to my advisor Dr.rer.nat.Linus Pasasa who has given lecturer and his assistance to be able to complete this thesis. His valuable inputs and correction is the major factor to keep the thesis writing in the right direction.

To my colleagues in the company, Hendarto, Suganda, Marindo, Erwin, Safrudin and Yano who has given their contribution to get all the information related to the research subject, so this will not be happened without you all. Many thanks to Pak Izhar and Pak H. J Schill who have given me the opportunity to study in SGU and to motivate me for getting the best result that I should achieve.

Finally, to my SGU colleagues in MBA Batch #11 who keep supporting me even you also have your own difficulties : Luthfi, Greg, Tresna, Firman, Oepoyo, Budi, Steven, Shen, Deepti, Arini and Christine; I wish the best for you all.

TABLE OF CONTENTS

STATEMENT BY THE AUTHOR	2
ABSTRACT	3
DEDICATION	4
ACKNOWLEDGMENTS	5
CHAPTER 1 - INTRODUCTION	11
1.1. Background	
1.1.1. Energy Sources Overview	
1.1.2. Global Warming Issues Related to Energy Consumption	
1.2 Eco-efficiency Management Strategy.	16
1.3 Company Profile of PT. X	
1.3.1. Organization Chart	
1.3.2. Process Flow Diagram	
1.4 Problem Description	
1.5 Thesis Structure	24
CHAPTER 2 - LITERATURE REVIEW	26
2.1 Energy Outlook	
2.1 Energy Outlook. 2.1.1. Oil Price Increase and Declining of Oil Reserve.	
2.1.2. Natural Gas as Alternative Energy	
2.2 Eco-efficiency	
2.3 Cleaner Production as Tool-Box of Eco-efficiency in PT. X	
2.4 Global Warming Projection	
2.5 Effect of Radiative Forcing Components	35
2.6 Industry Contribution to Global Greenhouse Gas Emission	
2.7 Future Emission Prediction	
2.8 Potential Impact of Climate Change on Markets	38
2.8.1. Industry	38
2.8.2. Energy Sector	39
2.8.3. Agriculture and Forestry	
2.8.4. Construction and Associated Industry	
2.9 Strategy to Address Climate Change.	40
2.10 Kyoto Protocol and Measures to Achieve GHGs Reduction	41
CHAPTER 3 - METHODOLOGY	43
3.1 Thesis Objectives	43
3.2 Contribution to Knowledge	43
3.3 Research Design and Methodology	44
3.3.1 Net Present Value (NPV)	
3.3.2 Internal Rate of Return (IRR)	
3.3.3 Payback Period (PP)	
3.3.4 Sensitivity Analysis	45

3.3.5 3.3.6	NPO Analysis Framework Greenhouse Gases Emission Indicator	
3.3.0 3.3.7		
	Eco-efficiency Measurement	
	hesis	
5.5 Hypot	10515	
CHAPTER 4	- RESULT AND DISCUSSION	51
4.1 Review	v of Project Proposal Summary	51
4.2 Projec	t Analysis Based on Actual Condition After Implementation	51
4.2.1	Fuel Oil plus LPG Energy Consumption	51
4.2.2	Natural Gas Energy Consumption	53
4.2.3	Actual Cost Saving After Project Implementation	54
4.2.4	NPV, IRR and PP Summary After Project Implementation	55
4.2.5	Sensitivity of NPV and IRR to Production Rate	
4.2.6	NPV at Different Discount Rate	58
4.2.7	NPV and IRR at Different Tax Rate	59
4.2.8	Sensitivity of NPV and IRR to Fuel Oil Price	60
4.2.9	Sensitivity of NPV and IRR to Natural Gas Price	62
4.2.10	Test Case at The Worst Probable Multiple Change Condition	64
4.3 Non-P	roduct Output (NPO) Analysis Chart	65
4.3.1	NPO Analysis Summary Before Project Implementation.	66
4.3.2	NPO Analysis Summary After Project Implementation	69
4.4 Eco-ef	ficiency Before and After Project Implementation	72
CHAPTER 5	- CONCLUSION AND RECOMMENDATION	74
5.1 Resear	ch Conclusion	74
5.2 Recom	mendation	76
REFERENCE	S	78
APPENDICE	S	80
	M VITAE	
CURRICULU	M VITAE	118

SM

LIST OF TABLES

Table 2-1	Emission Comparison of Natural Gas, Oil and Coal	30
Table 3-1	Default Carbon Dioxide Emission from Fuels	47
Table 3-2	Country Factor for Emission from Electricity	48
Table 4-1	Summary of Calculation in the Project Proposal	51
Table 4-2	Sorted Data of Fuel Oil and LPG Consumption	52
Table 4-3	Summary of Actual Saving Calculation After Project Implementation	n.55
Table 4-4	Summary of PP, NPV and IRR after Project Implementation	55
Table 4-5	Summary of NPO Analysis Before Project Implementation	67
Table 4- 6	Summary of NPO Cost Analysis Before Project Implementation	68
Table 4-7	CO ₂ Emission Before Project Implementation Summary	69
Table 4-8	Summary of NPO Analysis After Project Implementation	70
Table 4-9	Summary of NPO Cost Analysis After Project Implementation	71
Table 4-10	CO ₂ Emission After Project Implementation Summary	72
Table A-1	Regression Output of Fuel Oil and LPG Energy Consumption	80
Table A-2	Consumption of Natural Gas	81
Table A-3	Regression Output of Natural Gas Energy Consumption	82
Table A-4	NPV, IRR and PP Calculation at 30 % Production Rate	
Table A-5	NPV, IRR and PP Calculation at 32 % Production Rate	84
Table A- 6	NPV, IRR and PP Calculation at 40 % Production Rate	
Table A-7	NPV, IRR and PP Calculation at 50 % Production Rate	86
Table A-8	NPV, IRR and PP Calculation at 60 % Production Rate	87
Table A-9	NPV, IRR and PP Calculation at 70 % Production Rate	88
Table A-10	NPV, IRR and PP Calculation at 80 % Production Rate	89
Table A-11	NPV, IRR and PP Calculation at 90 % Production Rate	
Table A-12	NPV, IRR and PP Calculation at 100 % Production Rate	
Table A-13	Data for NPV and IRR Sensitivity Analysis to Production Rate	92
Table A- 14	NPV at Different Discount Rate	
Table A-15		93
Table A-16	NPV at Discount Rate 15 % at 70 % Production Rate	
Table A-17	NPV at Discount Rate 25 % at 70 % Production Rate	95
Table A-18	NPV at Discount Rate 35 % at 70 % Production Rate	96
Table A-19	NPV at Discount Rate 50 % at 70 % Production Rate	97
Table A- 20	NPV and IRR at Tax Rate 5 % at 70 % Production Rate	98
Table A-21	NPV and IRR at Tax Rate 10 % at 70 % Production Rate	99
Table A- 22		
Table A-23		
Table A-24		
Table A- 25	NPV and IRR at Tax Rate 30 % at 70 % Production Rate	.103
Table A- 26		
	NPV and IRR at Fuel Oil Price 50 % Reduction, at 70 % Production	
	·	
Table A- 28	NPV and IRR at Fuel Oil Price 75 % Reduction, at 70 % Production	n
	·	

Table A- 29	NPV and IRR at Fuel Oil Price 25 % Increase , at 70 % Production
Rate	
Table A- 30	NPV and IRR at Fuel Oil Price 50 % Increase , at 70 % Production
Rate	
Table A- 31	NPV and IRR at NG Price 25 % Reduction , at 70 % Production Rate
Table A- 32	NPV and IRR at NG Price 50 % Reduction , at 70 % Production Rate
Table A- 33	NPV and IRR at NG Price 25 % Increase , at 70 % Production Rate 111
Table A- 34	NPV and IRR at NG Price 50 % Increase , at 70 % Production Rate 112
Table A- 35	NPV and IRR at NG Price 75 % Increase , at 70 % Production Rate 113
Table A- 36	Fuel Oil Price Change Effect to NPV and IRR114
Table A- 37	NG Price Change Effect to NPV and IRR114
Table A- 38	NPV and IRR at Multiple Condition (Test Case)115
Table A- 39	Electrical Equipment Data Summary
Table A-40	Price List of Materials in PT. X

SWISS GERMAN UNIVERSITY

SW

LIST OF FIGURES

Figure 1-1	World Oil Prices Trend 1970-2030	11
Figure 1-2	Indonesia's Oil Production and Consumption 1980-2006	
Figure 1-3	Indonesia's Natural Gas Production and Consumption 1960 2000	
Figure 1-4	Indonesia's Coal Production and Consumption 1980-2000	
Figure 1-5	Global Mean Surface Temperature 1850-2005	
0	Temperature Data and Predicted Trend after 2000 in Indonesia	
Figure 1-6		
Figure 1-7	Recent Increases in Atmospheric Carbon Dioxide (CO ₂) Total of Carbon Emission in Indonesia	
Figure 1-8		
Figure 1-9	Operational Principles in PT. X	
Figure 1-10	PT. X Plant Organization Chart	
Figure 1-11	Steam Generator	
Figure 1-12	Liquid Incinerator	
Figure 1-13	Solid Incinerator	
Figure 1-14	Flares	
Figure 1-15	Simplified Process Flow Diagram PT. X	
Figure 1-16	Fuel Oil Price Trend of PT.X (1999-2005)	
Figure 2-1	Indonesia Petroleum Proven Reserve from 1980 to 2007	
Figure 2-2	Indonesia Oil for Industry (M. Solar) Price from 2001 to 2008	
Figure 2-3	Indonesia Natural Gas Industries Production (%)	
Figure 2-4	Natural Gas Distribution	
Figure 2-5	More Welfare from Less Nature	
Figure 2- 6	The Business Case for Eco-efficiency	
Figure 2-7	Environmental Regulation and Competitiveness	
Figure 2-8	Projection of Global Warming with Different Emission Scenarios	
Figure 2-9	Factors Influencing the Heat Balance of Atmosphere	
Figure 2-10		36
Figure 2-11	Global Greenhouse Gas Emission by Source in 2004	37
Figure 2-12		
Figure 3-1	Non-Product Output Analysis Framework	46
Figure 3-2	GHG Indicator Framework	47
Figure 4-1	Energy Consumption of Fuel Oil plus LPG for Production	53
Figure 4- 2	Energy Consumption of Natural Gas for Production	54
Figure 4-3	NPV at Different Production Rate	
Figure 4- 4	IRR at Different Production Rate	57
Figure 4- 5	Payback Period at Different Production Rate	57
Figure 4- 6	Effect of Production Rate Changes to NPV and IRR	
Figure 4- 7	NPV to Discount Rate Profile at 70 % Production Rate	
Figure 4-8	NPV and IRR to Tax Rate Profile at Production Rate 70 %	
Figure 4-9	Sensitivity of NPV to Fuel Oil Price	
•	Sensitivity of IRR to Fuel Oil Price	
•	Sensitivity of NVP to NG Price at Production Rate 70 %	
•	Sensitivity of IRR to NG Price at Production Rate 70 %	
	NPO chart of PT. X Production Process	
0		