IMPROVING DAILY TOTAL COMPLETE SHIPMENT
BY USING SYSTEM DYNAMICS SIMULATION
IN AN INDONESIAN CAR SPARE PARTS MANUFACTURER

By

Steven Liang
21952042

MASTER’S DEGREE
in
ENGINEERING MANAGEMENT
FACULTY OF MECHANICAL ENGINEERING

SWISS GERMAN UNIVERSITY
The Prominence Tower
Jalan Jalur Sutera Barat No. 15, Alam Sutera
Tangerang, Banten 15143 - Indonesia

February 2021
Revision after Thesis Defense on January 25th, 2021
STATEMENT BY THE AUTHOR

I hereby declare that this submission is my own work and to the best of my knowledge, it contains no material previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma at any educational institution, except where due acknowledgement is made in the thesis.

Steven Liang
Student

Approved by:

Dr. Eng. Aditya Tirta Pratama, S.Si, M.T.
Thesis Advisor

Dr. Eng. Sumarsono, S.T., M.T., OCP
Thesis Co-Advisor

Dr. Maulahikmah Galinium, S.Kom., M.Sc.
Dean

Steven Liang
ABSTRACT

PT. Nusahadi Citraharmonis is a leading manufacturing company in Indonesia that produces spare parts for various automotive industries. The company is an active supplier for several well-known car manufacturer in Indonesia, which are: NTC, HMMI, TMMIN, and ASKA. However, the company is currently having difficulty in fulfilling all customer on time. Thus, creating backlogged order in the system and decreasing the daily total complete shipment. The objective of this research is to redesign new inventory level to increase the daily total complete shipment. To fix the problem, system dynamics simulation is used as a tool for improvement. From the result of system dynamics simulation, the newly redesigned inventory level is able to decrease the backlogged order in the system and increase the daily total complete shipment. Besides the system dynamics simulation, standard operating procedure for operating the system is also made and given to the company for future use.

Keywords: Manufacturing, Automotive, Backlogged Order, Daily Total Complete Shipment, System Dynamics Simulation.
DEDICATION

I dedicate this thesis to myself.
ACKNOWLEDGEMENTS

I would like to thank Mr. David as the owner of PT. Nusahadi Citra Harmonis for giving me the opportunity to do this thesis research in his company and sharing the data needed for this thesis research.

I would like to also thank Mr. Sumarno as the manufacturing leader of the company and my supervisor during this thesis research.

Last but not least, I would like to also thank my advisor and co-advisor for their support, motivation, and guidance in completing this thesis research.
TABLE OF CONTENTS

STATEMENT BY THE AUTHOR ... 2
ABSTRACT ... 3
DEDICATION ... 5
ACKNOWLEDGEMENTS ... 6
TABLE OF CONTENTS ... 7
LIST OF FIGURES ... 9
LIST OF TABLES ... 10
LIST OF EQUATIONS ... 10
CHAPTER 1 – INTRODUCTION .. 11
 1.1 Background ... 11
 1.2 Research Problem ... 12
 1.3 Research Objective ... 13
 1.4 Research Question ... 13
 1.5 Scope and Limitation .. 13
 1.6 Thesis Structure ... 13
CHAPTER 2 - LITERATURE REVIEW .. 15
 2.1 Toyota Production System ... 15
 2.2 Inventory Level Control .. 17
 2.2.1. Inventory Level Calculation ... 17
 2.2.2. Demand Forecasting .. 18
 2.3 DMAIC Methodology .. 18
 2.3.1. Define ... 19
 2.3.2. Measure ... 19
 2.3.3. Analyze ... 19
 2.3.4. Improve ... 19
 2.3.5. Control .. 19
 2.4 Cause-Effect Diagram .. 20
 2.5 System Dynamics Simulation ... 20
 2.5.1. Causal Loop Diagram ... 21
 2.5.2. Stock-Flow Diagram ... 21
 2.5.3. Verification .. 22
 2.5.4. Validation ... 22
 2.5.5. Simulation Result .. 23
 2.5.6. Sensitivity Analysis .. 23
Chapter 3 - Research Methodology

3.1 Define
 - 3.1.1. Problem Identification
 - 3.1.2. Literature Review
 - 3.1.3. Research Design

3.2 Measure

3.3 Analyze
 - 3.3.1. Cause-Effect Diagram Making
 - 3.3.2. Causal Loop Diagram Making
 - 3.3.3. Stock-Flow Diagram Making

3.4 Improve
 - 3.4.1. Verification and Validation
 - 3.4.2. Simulation Result and Sensitivity Analysis

3.5 Control

Chapter 4 - Results and Discussions

4.1 Manufacturing Process Flow

4.2 Cause-Effect Diagram
 - 4.2.1. Cause-Effect Diagram Making
 - 4.2.2. Cause-Effect Diagram Matrix

4.3 Causal Loop Diagram

4.4 Stock-Flow Diagram

4.5 Verification

4.6 Validation

4.7 Simulation Result

4.8 Sensitivity Analysis

4.9 System Manuals

Chapter 5 - Conclusions and Recommendations

5.1 Conclusions

5.2 Recommendations

Glossary

References

Appendix

Curriculum Vitae
LIST OF FIGURES

Figure 2.1 Literature review mind map ... 15
Figure 2.2 Toyota production system .. 16
Figure 2.3 Inventory level control using reorder point 17
Figure 2.4 Cause-effect diagram ... 20
Figure 2.5 Causal loop diagram ... 21
Figure 2.6 Stock flow diagram ... 22
Figure 3.1 Research methodology flowchart ... 25
Figure 4.1 Process flowchart ... 28
Figure 4.2 Cause-effect diagram ... 30
Figure 4.3 Causal loop diagram ... 35
Figure 4.4 Stock flow diagram ... 37
Figure 4.5 Extreme condition test ... 39
Figure 4.6 Behavior pattern test (backlogged order) 39
Figure 4.7 Behavior pattern test (total complete shipment) 40
Figure 4.8 Simulation result (backlogged order) .. 41
Figure 4.9 Simulation result (daily total complete shipment) 41
Figure 4.10 Sensitivity analysis result .. 45
Figure 4.11 Standard operating procedure for operating the system 47
LIST OF TABLES

Table 4.1 Cause-effect diagram matrix ... 32
Table 4.2 Mathematical formula ... 38
Table 4.3 Backlogged order frequency ... 40
Table 4.4 Simulation result .. 43
Table 4.5 Sensitivity analysis result ... 45

LIST OF EQUATIONS

Equation 2.1 Reordering level formula ... 18
Equation 2.2 Minimum inventory level formula .. 18
Equation 2.3 Maximum inventory level formula .. 18
Equation 2.4 Moving average method formula ... 18