THE UNIVERSITY OF TULSA
THE GRADUATE SCHOOL

(FINITE ELEMENT) ANALYSIS OF TORSIONAL SHEAR STRESS, TEMPERATURE PROFILE ALONG THE RADIAL DIRECTION, RADIAL AND LONGITUDINAL DEFLECTION ON ROTARY CEMENT KILN'S SHELL USING ANSYS VALIDATED WITH FORTRAN

Submitted by:
Gembong Baskoro

A project report submitted in partial fulfillment of the requirements for the degree of Master of Engineering in the Discipline of Mechanical Engineering

Department of Mechanical Engineering

THE UNIVERSITY OF TULSA THE GRADUATE SCHOOL DEPARTMENT OF MECHANICAL ENGINEERING

(FINITE ELEMENT) ANALYSIS OF TORSIONAL SHEAR STRESS, TEMPERATURE PROFILE ALONG THE RADIAL DIRECTION, RADIALAND LONGITUDINAL DEFLECTION ON ROTARY CEMENT KILN'S SHELL USING ANSYS VALIDATED WITH FORTRAN

Submitted by:
Gembong Baskoro

A master of engineering project report
Approved for the discipline of
Mechanical Engineering

By Project Advisor:
James R. Sorem, Jr., Ph.D., P.E.

COPYRIGHT STATEMENT

Copyright © 1994 by Gembong Baskoro

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without the prior written permission of the author.

THE UNIVERSITY OF TULSA
THE GRADUATE SCHOOL
DEPARTMENT OF MECHANICAL ENGINEERING

Master Project \& Report

(FINITE ELEMENT) ANALYSIS OF TORSIONAL SHEAR STRESS, TEMPERATURE PROFILE ALONG THE RADIAL DIRECTION, RADIAL AND LONGITUDINAL DEFLECTION ON ROTARY CEMENT KILN'S SHELL USING ANSYS VALIDATED WITH FORTRAN

Submitted by:
Gembong Baskoro

December 16, 1994

Fall 94
Tulsa, Oklahoma

Abstract

Rotary Cement Kiln (RKC) has a very important role in the cement manufacturing process to convert raw materials into clinker. Clinker is a solid material in the form of granules with a diameter of $3-25 \mathrm{~mm}$. RCK is in the form of a cylindrical tube that rotates horizontally at a certain tilt angle. Raw materials are burned in the RCK through several stages at different temperatures up to $1500^{\circ} \mathrm{C}$. The size of the RCK depends on the capacity of the cement industry. For example, the cement industry with a capacity of 7800 tones/hour, the RCK has dimensions of 84 m in length, 5.6 m in diameter and a rotational speed of 2.8 rpm with an RCK tilt of 4°.

Therefore, RCK must have the strength to be able to withstand operating conditions with high loads and temperatures. This master project aims to analyze the RCK's shell, especially for shear stress, temperature profile, and deflection that occurs in the RCK's shell. This analysis uses two approaches, namely Finite Element Analysis using ANSYS software and the results are validated based on formulas derived from theory and calculated using the FORTRAN program.

TABLE OF CONTENTS

ABSTRACT V
TABLE OF CONTENTS vi
LIST OF FIGURES vii
CHAPTER 1 INTRODUCTION 1
General Description 1
Purpose 1
CHAPTER 2 ANALYSIS OF THE TORSIONAL SHEARING STRESS 2
Polar Moment of Inertia 2
Torsion 3
Angle of Twist 3
Discussion 3
ANSYS Result 4
CHAPTER 3 TEMPERATURE PROFILE ANALYSIS ALONG RADIAL DIRECTION OF A KILN 5
Temperature distribution along r-direction 5
Result 7
Discussions 8
ANSYS Result 9
CHAPTER 4 RADIAL DEFLECTION OF THE KILN'S SHELL 10
Moments 10
Stress 11
Conclusion 12
ANSYS Result 13
CHAPTER 5 LONGITUDINAL DEFLECTION ANALYSIS OF THE KILN'S SHELL 16
Shearing force 17
Bending Moment 17
Deflection 17
Calculation example 19
Results 19
Conclusion 21
Data Results 22
ANSYS Solution 24
REFERENCES 26
APPENDIX 27

LIST OF FIGURES

Figure 1 General construction of a Kiln
Figure 2 Temperature along R-direction
Figure 3 Temperature profile
Figure 4 The model of Kiln's shell
Figure 5 Moment distribution

GENERAL INTRODUCTION

In cement industry, Rotary Cement Kiln (RCK) can be divided into two processes: dry, and wet process. The differences of these processes can be seen on the feed materials, also the size of RCK. In wet process the feed materials have the slurry form, and the size of RCK is large enough. On the contrary in dry process the feed materials are dry, and the size of RCK is small. Due to these reasons, most of the cement industries use the dry process.

RCK is used to produce clinkers, as a main material for performing cement, by burning the feed materials. The processes in the RCK can be divided into pre-calcination, calcination, and pre-cooling. These processes related with the chemical reactions. To perform clinker heat generated in the axial direction of RCK, while RCK moving. The Geometry of RCK is a cylinder shell with refractory inside. This construction is supported by three or more pairs of rollers, it depends on the size of RCK. These rollers keep RCK moving freely. The general construction of RCK is shown below.

Figure 1. General Construction of a Kiln
The objective of this report is to present the analysis of the kiln's shell. This project is divided into several tasks i.e. analysis of the torsional shear stress, temperature profile analysis along radial direction, radial and longitudinal deflection analysis of the kiln's shell. All the analysis is solved by two methods, theoretical method, and finite element method. The data result is obtained by making FORTRAN programs to support all the information needed.

Analysis of these problems is performed by employing the Finite Element Method and to be compared with the theoretical solution. A software called ANSYS is used to obtain the finite element solution while FORTRAN program is written for theoretical solution.

ANALYSIS OF THE TORSIONAL SHEARING STRESS

The torsional shearing stress along cross-sectional area of Rotary Kiln is defined by the calculation below:

Graph 1. Torsional Shearing Stress

Data Kiln :

$\mathrm{L}=1250$ in , Length from driven motor to one of the supports
do $=240$ in , Outside diameter of kiln
di $=237$ in, Inside diameter of shell kiln
HP $=40 \quad$ HP , Power of electric motor transferred to kiln
$n=0.5 \quad \mathrm{rpm}$, Speed of kiln
$\mathrm{G}=1.20 \times 10^{7} \frac{\mathrm{lb}}{\mathrm{in}^{2}}$, Modulus of elasticity

Polar moment of inertia :
$\mathrm{J}=\frac{\pi}{32}\left(\mathrm{Do}^{4}-\mathrm{Di}^{4}\right)$
$\mathrm{J}=7991595.124 \mathrm{in}^{4}$

Torsion :

$T=\frac{63000 \times H P}{n}$
$\mathrm{T}=5.04 \times 10^{6} \mathrm{lb}$.in
The Torsional shearing stress is defined by the equation below:
Ss $=\frac{\text { T. } \rho}{\mathrm{J}}$, ri $<\rho<$ ro
The result shown in graph 1
The maximum shearing stress is $75.67950961 \frac{\mathrm{lb}}{\mathrm{in}^{2}}$

Angle of Twist :

$\theta=\frac{\mathrm{T} . \mathrm{L}}{\mathrm{G} . \mathrm{J}}$
$\theta=0.00376399^{\circ}$

Discussion :

Comparison between ANSYS solution and Calculation:

	Calculation result	ANSYS Solution	Error (\%)
Minimum Shearing Stress	74.733515	72.918	2.429
Maximum Shearing Stress	75.679506	73.913	2334

From this table, the error is small enough. The difference between calculation result and ANSYS solution can be explained as follows: In the actual condition, torsion is transmitted by the electric motor through the gear to the kiln. So that the force acting on the gear is the factor that determines the calculation of the shearing stress. However, the calculation is done by considering the torsion. This is different from the ANSYS solution that considering the force.

In conclusion, the error is caused by the fact that ANSYS consider the force and the calculation does not. However, the error is small enough, so that it is acceptable.

TEMPERATURE PROFILE ANALYSIS ALONG RADIAL DIRECTION OF A KILN

Temperature distribution along r-direction:

The method of conduction on multi layers shell is used to analyze the temperature distribution.

Figure 2. Temperature along r-direction
where :
layer 1 is refractory
layer 2 is shell
Heat per unit length is :
$\frac{\mathrm{q}}{2 . \mathrm{\pi} \cdot \mathrm{~L}}=\frac{\mathrm{Ti}-\mathrm{To}}{\frac{1}{\mathrm{r} 1 . \mathrm{hi}}+\sum_{i=1}^{3} \cdot \frac{1}{\mathrm{ki}} \cdot \ln \left(\frac{\mathrm{ri}+1}{\mathrm{ri}}\right)+\frac{1}{\mathrm{r} 4 . \mathrm{ho}}}$
Temperature on each layers are:
$\mathrm{T} 1=\mathrm{Ti}-\frac{\mathrm{q}}{2 . \pi . \mathrm{L}} \cdot \frac{1}{\mathrm{r} 1 . \mathrm{hi}}$
$\mathrm{T} 2=\mathrm{T} 1-\frac{\mathrm{q}}{2 \cdot \mathrm{\pi} \cdot \mathrm{~L}} \cdot \frac{\ln \left(\frac{\mathrm{r} 2}{\mathrm{r} 1}\right)}{\mathrm{k} 1}$
$\mathrm{T} 3=\mathrm{T} 2-\frac{\mathrm{q}}{2 \cdot \pi \cdot \mathrm{~L}} \cdot \frac{\ln \left(\frac{\mathrm{r} 3}{\mathrm{r} 2}\right)}{\mathrm{k} 2}$
Temperature distribution along r-direction is solved by the governing equation below:
$\frac{1}{r} \cdot \frac{\mathrm{~d}}{\mathrm{dr}}\left(\mathrm{r} \cdot \frac{\mathrm{dT}}{\mathrm{dr}}\right)=0$

The general equation of temperature distribution is:
$\mathrm{T}=\mathrm{c} 1 \cdot \ln (\mathrm{r})+\mathrm{c} 2$
where c 1 and c 2 are constants, and depend on the boundary conditions
at: $\mathbf{r i}<\mathbf{r}<\mathbf{r} 1$
Boundary conditions are:
$\mathrm{r}=\mathrm{ri} \rightarrow \mathrm{T}=\mathrm{Ti}$
$\mathrm{r}=\mathrm{rl} \rightarrow \mathrm{T}=\mathrm{T} 1$
then,
$\mathrm{c} 1=\frac{\mathrm{Ti}-\mathrm{T} 1}{\ln \left(\frac{\mathrm{r} 1}{\mathrm{ri}}\right)}$
$\mathrm{c} 2=\mathrm{T} 1-\mathrm{c} 1 . \ln (\mathrm{ri})$
at: $\mathbf{r} \mathbf{~ < ~} \mathbf{r}<\mathbf{r} \mathbf{2}$
Boundary conditions are:
$\mathrm{r}=\mathrm{rl} \rightarrow \mathrm{T}=\mathrm{T} 1$
$\mathrm{r}=\mathrm{r} 2 \rightarrow \mathrm{~T}=\mathrm{T} 2$
then,
$\mathrm{c} 1=\frac{\mathrm{T} 1-\mathrm{T} 2}{\ln \left(\frac{\mathrm{r} 1}{\mathrm{r} 2}\right)}$
$\mathrm{c} 2=\mathrm{T} 1-\mathrm{c} 1 \cdot \ln (\mathrm{r} 1)$
at: $\mathbf{r} \mathbf{2}<\mathbf{r}<\mathbf{r 3}$
Boundary conditions are:
$\mathrm{r}=\mathrm{r} 2 \rightarrow \mathrm{~T}=\mathrm{T} 2$
$\mathrm{r}=\mathrm{r} 3 \rightarrow \mathrm{~T}=\mathrm{T} 3$
then,
$\mathrm{c} 1=\frac{\mathrm{T} 2-\mathrm{T} 3}{\ln \left(\frac{\mathrm{r} 2}{\mathrm{r} 3}\right)}$
$\mathrm{c} 2=\mathrm{T} 1-\mathrm{c} 1 \cdot \ln (\mathrm{r} 2)$
at: $\mathbf{r} \mathbf{3}<\mathbf{r}<\mathbf{r o}$
Boundary conditions are:
$\mathrm{r}=\mathrm{r} 3 \rightarrow \mathrm{~T}=\mathrm{T} 3$
$\mathrm{r}=\mathrm{ro} \rightarrow \mathrm{T}=\mathrm{To}$
then,
$\mathrm{c} 1=\frac{\mathrm{To}-\mathrm{T} 3}{\ln \left(\frac{\mathrm{r}}{\mathrm{r} 3}\right)}$
$\mathrm{c} 2=\mathrm{T} 1-\mathrm{c} 1 \cdot \ln (\mathrm{r} 3)$

All the equations above solved by FORTRAN program (enclosed) with data as follows:

$$
\begin{array}{llll}
\mathrm{rl}=120-1.5-12 & \text { (in) } & \mathrm{k} 1=0.0156 & \mathrm{Ti}=1600 \mathrm{~F} \\
\mathrm{r} 2=120-1.5 & \text { (in) } & \mathrm{k} 2=0.7833 & \mathrm{To}=50 \mathrm{~F} \\
\mathrm{r} 3=120 & \text { (in) } & & \mathrm{hi}=0.0139 \\
& & & \mathrm{ho}=0.0347
\end{array}
$$

also assume that;

$$
\begin{aligned}
& \text { ri }=105 \text { (in) at } \mathrm{r} \text { equal }- \text { infinite } \\
& \text { ro=130 (in) at } \mathrm{r} \text { equal + infinite }
\end{aligned}
$$

Result and discussions

Print out result can be seen below:
Temperature on the layers
$\mathrm{r}(1)=106.5 \quad \mathrm{~T}(1)=1463.82300$
$r(2)=118.5 \quad T(2)=86.32988$
$\mathrm{r}(3)=120.0 \quad \mathrm{~T}(3)=83.09261$

r	Temperature
105.0	1600.00200
106.0	1509.00300
107.0	1403.39400
108.0	1283.37700
109.0	1164.46600
110.0	1046.64100
111.0	929.88210
112.0	814.17070
113.0	699.48780
114.0	585.81530
115.0	473.13560
116.0	361.43150
117.0	250.68620
118.0	140.88350
119.0	85.24620
120.0	83.09255
121.0	79.66168
1220	76.25889
123.0	72.88387
1240	69.53619
125.0	66.21539
126.0	62.92106

$127.0 \quad 59.65276$
$128.0 \quad 56.41010$
129.053 .19268
$130.0 \quad 50.00010$

Discussions :

The comparison between theoretical data and ANSYS solution appear on the table below:

	Theoretical	ANSYS	Error (\%)
Max. Temperature	1463.823	1465	0.08
Min. Temperature	83.09261	97.952	15.17

Temperature profile is shown in the graph below.

Figure 3. Temperature profile

The graph shows that between r1 and r 2 temperature drops very rapidly, also it looks linear. These conditions occur because the material, Magnesite Chrome brick, behaves as insulating material, and the linearity of the graph caused by the slope between every point is very small. The comparison between ANSYS and theoretical solution shows that they are very close for predicting max. and min. temperature. It means that ANSYS solution is capable of predicting temperature profile in the Kiln.

RADIAL DEFLECTION ANALYSIS OF THE KILN'S SHELL

The deformation of kiln's shell can be predicted by making a model with the assumption that long is uniformly distributed in the specific area and neglects the rotation of kiln. This assumption can be described as seen in figure 1 . The load is labelled a5 $\mathrm{Q} / 2$, and the reaction as R .

Figure 4. The model of kiln's shell

Reaction on the support:
$\mathrm{R} 1=\mathrm{R} 2=\frac{\mathrm{Q}}{2 \operatorname{Cos} \phi 1}$

Moments :

$\mathrm{M}_{\mathrm{A}}^{\mathrm{C}}=\frac{\mathrm{QR}}{2 \pi}(\operatorname{Sec} \phi 1-1-\phi 1 \cdot \tan \phi 1 \cdot \operatorname{Cos} \phi)$
$\mathrm{M}_{\mathrm{C}}^{\mathrm{D}}=\frac{\mathrm{QR}}{2 \pi}(\operatorname{Sec} \phi 1-1-\phi 1 \cdot \tan \phi 1 \cdot \operatorname{Cos} \phi)+\frac{\mathrm{QR}}{2 \operatorname{Cos} \phi 1} \operatorname{Sin}(\phi+\phi 1)$
in dimensionless :
$\frac{\mathrm{M}_{\mathrm{C}}^{\mathrm{A}}}{\mathrm{QR}}=\frac{1}{2 \pi}(\operatorname{Sec} \phi 1-1-\phi 1 \cdot \tan \phi 1 \cdot \operatorname{Cos} \phi)$
$\frac{\mathrm{M}_{\mathrm{D}}^{\mathrm{C}}}{\mathrm{QR}}=\frac{1}{2 \pi}(\operatorname{Sec} \phi 1-1-\phi 1 \cdot \tan \phi 1 \cdot \operatorname{Cos} \phi)+\frac{1}{2 \operatorname{Cos} \phi 1} \operatorname{Sin}(\phi+\phi 1)$

The general expression of deflection (Δ), in terms of elastic energy:
$\Delta=\int \frac{\text { m.M.ds }}{\text { F.E.I }}$
where:

$$
\begin{aligned}
& \mathrm{m}=\text { Bending moment caused by auxiliary force } \mathrm{F} \\
& \mathrm{M}=\text { Bending moment caused by actual load } \mathrm{Q} \\
& \mathrm{~F}=\text { Represent an auxiliary force }
\end{aligned}
$$

so that:

$$
\begin{aligned}
& m=F \cdot R . \operatorname{Sin} \phi \\
& d s=\text { R.d } \phi \\
& I=\frac{b . t^{3}}{12}
\end{aligned}
$$

where: $t=$ thickness of the shell

Then the equation of radial deflection becomes:
$\Delta_{\mathrm{D}}^{\mathrm{C}}=\frac{1}{\text { E.I }} \int_{\mathrm{D}}^{\mathrm{C}} \mathrm{R}^{2} \cdot \operatorname{Sin} \phi \cdot \mathrm{M}_{\mathrm{D}}^{\mathrm{C}} \mathrm{d} \phi$
$\Delta_{\mathrm{C}}^{\mathrm{A}}=\frac{1}{\text { E.I }} \int_{\mathrm{C}}^{\mathrm{A}} \mathrm{R}^{2} \cdot \operatorname{Sin} \phi \cdot \mathrm{M}_{\mathrm{C}}^{\mathrm{A}} \mathrm{d} \phi$

Stress :

$\tau=\frac{\mathrm{M} . \mathrm{c}}{\mathrm{I}}$
where:
$\mathrm{c}=\frac{\mathrm{t}}{2}$
Then after substituting the momentum equation into stress equation, it is given:
$\tau_{\mathrm{D}}^{\mathrm{C}}=\frac{6}{\mathrm{~b} \cdot \mathrm{t}^{2}} . M_{C}^{D}$

Also,
$\tau_{C}^{A}=\frac{6}{b . t^{2}} . M_{C}^{A}$

From these equations the moment distribution can usually be related to stress distribution and displacement. On the other hand, moment distribution can describe all the conditions happening on the kiln's shell. The moment distribution can be seen in the graph below.

The data for generating this graph is taken from the data of the kiln as seen in the previous analysis.

Figure 5. Moment distribution
The trend of these results agree with the ANSYS solution.

Conclusions:

Due to the load distribution, shell tends to deform in the radial direction. It also deforms the shell in the longitudinal direction. The maximum deflection occurs at the long distance of the supports, or there is similar to cantilever beam. However, in the radial direction there are very small deflection. From these results, it is reasonable to give more attention to the deflection in the longitudinal direction instead of radial direction.

ANSYS 5.0 A-31
JAN 0
00:00:00 5
PLOT NO.
NODAL SOLUTION
STEP=1
SUB $=1$
TIME=1
SEQV (AVG)
TOP
DMX $=228.804$
SMN $=2631$
$S M X=.298 \mathrm{E}+07$
$\mathrm{SMXB}=.422 \mathrm{E}+07$
U
PRES
2631
333675

664720
\square

. $133 \mathrm{E}+07$
\square
$.166 \mathrm{E}+07$
$.199 \mathrm{E}+07$
$.232 \mathrm{E}+07$
$.265 \mathrm{E}+07$
$.298 \mathrm{E}+07$

LONGITUDINAL DEFLECTION ANALYSIS OF THE KILN'S SHELL

Longitudinal deflection of the kiln can also be determined by making a model of kiln as a beam. The kiln has three supports on it as shown below:

This model can be simplified as

Ma and Mc are

$$
\mathrm{Ma}=\frac{-\mathrm{ql}_{1}^{2}}{2}, \mathrm{Mc}=\frac{-\mathrm{ql}_{4}^{2}}{2}
$$

By applying three-moment method, Mb can be determined as

$$
\mathrm{Mb}=\frac{-\frac{\mathrm{q}}{4}\left(\mathrm{l}_{2}^{3}+\mathrm{l}_{3}^{3}\right)-\mathrm{Ma.l} \mathrm{l}_{2}-\mathrm{Mc} \cdot \mathrm{l}_{3}}{2\left(\mathrm{l}_{2}-\mathrm{l}_{3}\right)}
$$

The reactions R1, R2 and R3 are

$$
\begin{gathered}
\mathrm{R} 1=\frac{\mathrm{Mb}+\frac{\mathrm{q}}{2}\left(\mathrm{l}_{1}-\mathrm{l}_{2}\right)^{2}}{\mathrm{l}_{2}}, \mathrm{R} 3=\frac{\mathrm{Mb}+\frac{\mathrm{q}}{2}\left(\mathrm{l}_{3}-\mathrm{l}_{4}\right)^{2}}{\mathrm{l}_{3}} \\
\mathrm{R} 2=\mathrm{q} \cdot \sum_{\mathrm{i}=1}^{4} \mathrm{li}-(\mathrm{R} 1+\mathrm{R} 2)
\end{gathered}
$$

Shearing force

The shearing force in each section are.

$$
\begin{array}{ll}
0<\mathrm{x}<\mathrm{l}_{1} & \mathrm{v}(\mathrm{x})=-\mathrm{qx} \\
\mathrm{l}_{1}<\mathrm{x}<\mathrm{l}_{2} & \mathrm{v}(\mathrm{x})=-\mathrm{qx}+\mathrm{R} 1 \\
\mathrm{l}_{2}<\mathrm{x}<\mathrm{l}_{3} & \mathrm{v}(\mathrm{x})=-\mathrm{qx}+\mathrm{R} 1+\mathrm{R} 2 \\
\mathrm{l}_{3}<\mathrm{x}<\mathrm{l}_{4} & \mathrm{v}(\mathrm{x})=-\mathrm{qx}+\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3
\end{array}
$$

Bending Moment

The moment in each section can be derived based on the beam shown below:

Where

$$
\begin{aligned}
& l a=11 \\
& l b=11+12 \\
& \mathrm{lc}=11+12+13 \\
& \mathrm{ld}=11+12+13+14
\end{aligned}
$$

The moment distribution are

$$
\begin{array}{ll}
0<x<l_{\mathrm{a}} & \mathrm{M}(\mathrm{x})=-\frac{\mathrm{qx}}{2} \\
\mathrm{l}_{\mathrm{a}}<\mathrm{x}<\mathrm{l}_{\mathrm{b}} & \mathrm{M}(\mathrm{x})=-\frac{\mathrm{qx}}{2}+\mathrm{R} 1\left(\mathrm{x}-\mathrm{l}_{\mathrm{a}}\right) \\
\mathrm{l}_{\mathrm{b}}<\mathrm{x}<\mathrm{l}_{\mathrm{c}} & \mathrm{M}(\mathrm{x})=-\frac{\mathrm{qx}}{2}+\mathrm{R} 1\left(\mathrm{x}-\mathrm{l}_{\mathrm{a}}\right)+\mathrm{R} 2\left(\mathrm{x}-\mathrm{l}_{\mathrm{b}}\right) \\
\mathrm{l}_{\mathrm{c}}<\mathrm{x}<\mathrm{l}_{\mathrm{d}} & \mathrm{M}(\mathrm{x})=-\frac{\mathrm{qx}}{2}+\mathrm{R} 1\left(\mathrm{x}-\mathrm{l}_{\mathrm{a}}\right)+\mathrm{R} 2\left(\mathrm{x}-\mathrm{l}_{\mathrm{b}}\right)+\mathrm{R} 3\left(\mathrm{x}-\mathrm{l}_{\mathrm{c}}\right)
\end{array}
$$

Deflection:

The deflection can be derived by the equations below:

$$
\frac{d^{2} y}{d x^{2}}=\frac{M(x)}{E . I}
$$

Boundary conditions for this problem are:

$$
\begin{array}{lll}
\left.\mathrm{y}(\mathrm{la})\right|_{0} ^{\mathrm{l}_{\mathrm{a}}}=\left.\mathrm{y}(\mathrm{la})\right|_{\mathrm{l}_{\mathrm{a}}} ^{\mathrm{l}_{\mathrm{b}}}=0, & @ l \mathrm{l} \rightarrow & \left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{0} ^{\mathrm{l}_{\mathrm{a}}}=\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{\mathrm{l}_{\mathrm{a}}} ^{\mathrm{l}_{\mathrm{b}}} \\
\left.\mathrm{y}(\mathrm{lb})\right|_{\mathrm{l}_{\mathrm{a}}} ^{\mathrm{l}_{\mathrm{b}}}=\left.\mathrm{y}(\mathrm{lb})\right|_{\mathrm{l}_{\mathrm{b}}} ^{l_{\mathrm{c}}}=0, & @ \mathrm{lb} \rightarrow & \left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{\mathrm{l}_{\mathrm{a}}} ^{\mathrm{l}_{\mathrm{b}}}=\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{\mathrm{l}_{\mathrm{b}}} ^{l_{\mathrm{c}}} \\
\left.\mathrm{y}(\mathrm{lc})\right|_{\mathrm{l}_{\mathrm{b}}} ^{l_{\mathrm{c}}}=\left.\mathrm{y}(\mathrm{lc})\right|_{\mathrm{l}_{\mathrm{c}}} ^{l_{\mathrm{d}}}=0, & @ \mathrm{lc} \rightarrow & \left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{\mathrm{l}_{\mathrm{b}}} ^{\mathrm{l}_{\mathrm{c}}}=\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{\mathrm{l}_{\mathrm{c}}} ^{\mathrm{l}_{\mathrm{d}}}
\end{array}
$$

The deflections are:
$0<x<l_{a}, \quad y(x)=-\frac{1}{\text { E.I }}\left[-\frac{\mathrm{qx}^{4}}{24}+C_{1} x+C_{2}\right]$
$\mathrm{l}_{\mathrm{a}}<\mathrm{x}<\mathrm{l}_{\mathrm{b}}, \quad \mathrm{y}(\mathrm{x})=-\frac{1}{\text { E.I }}\left[-\frac{\mathrm{qx}^{4}}{24}+\frac{\mathrm{R}_{1} \mathrm{x}^{3}}{6}-\frac{\mathrm{R}_{1} \mathrm{l}_{\mathrm{a}} \mathrm{x}^{2}}{2}+\mathrm{C}_{3} \mathrm{x}+\mathrm{C}_{4}\right]$
$\mathrm{l}_{\mathrm{b}}<\mathrm{x}<\mathrm{l}_{\mathrm{c}}, \quad \mathrm{y}(\mathrm{x})=-\frac{1}{\text { E.I }}\left[-\frac{\mathrm{qx}^{4}}{24}+\frac{\mathrm{R}_{1} \mathrm{x}^{3}}{6}-\frac{\mathrm{R}_{1} \mathrm{l}_{\mathrm{a}} \mathrm{x}^{2}}{2}+\frac{\mathrm{R}_{2} \mathrm{x}^{3}}{6}-\frac{\mathrm{R}_{2} \mathrm{l}_{\mathrm{b}} \mathrm{x}^{2}}{2}+\mathrm{C}_{5} \mathrm{x}+\mathrm{C}_{6}\right]$
$1_{c}<x<1_{d}, \quad y(x)=-\frac{1}{\text { E.I }}\left[-\frac{q^{4} x^{4}}{24}+\frac{R_{1} x^{3}}{6}-\frac{R_{1} 1_{a} x^{2}}{2}+\frac{R_{2} x^{3}}{6}-\frac{R_{2} l_{b} x^{2}}{2}+\frac{R_{3} x^{3}}{6}-\frac{R_{3} 1_{c} x^{2}}{2} C_{7} x+C_{8}\right]$
After applying the boundary conditions into the equations of deflection, the constants can be determined as follows:
$\mathrm{C}_{3}=\frac{1}{\left(\mathrm{l}_{\mathrm{b}}-\mathrm{l}_{\mathrm{a}}\right)}\left[\frac{\mathrm{q}}{24}\left(\mathrm{l}_{\mathrm{b}}^{4}-\mathrm{l}_{\mathrm{a}}^{4}\right)+\frac{\mathrm{R}_{1}}{2}\left(\frac{2 l_{\mathrm{a}}^{3}}{3}-\frac{l_{\mathrm{b}}^{3}}{3}+\mathrm{l}_{\mathrm{a}} \mathrm{l}_{\mathrm{b}}^{2}\right)\right]$
$\mathrm{C}_{4}=\frac{\mathrm{ql}_{\mathrm{a}}^{4}}{24}+\frac{\mathrm{R}_{1} 1_{\mathrm{a}}^{3}}{3}-\mathrm{C}_{3} \mathrm{l}_{\mathrm{a}}$
$\mathrm{C}_{1}=\mathrm{C}_{3}-\frac{\mathrm{R}_{1} l_{\mathrm{a}}^{2}}{2}$
$\mathrm{C}_{2}=\frac{\mathrm{ql} \mathrm{l}_{\mathrm{a}}}{24}-\mathrm{C}_{1} \mathrm{l}_{\mathrm{a}}$
$\mathrm{C}_{5}=\mathrm{C}_{3}+\frac{\mathrm{R}_{2} \mathrm{l}_{\mathrm{b}}^{2}}{2}$
$\mathrm{C}_{6}=\frac{\mathrm{ql}_{\mathrm{b}}^{4}}{24}-\frac{\mathrm{l}_{\mathrm{b}}^{3}}{6}\left(\mathrm{R}_{1}+\mathrm{R}_{1}\right)+\frac{\mathrm{R}_{1} \mathrm{l}_{\mathrm{a}} \mathrm{l}_{\mathrm{b}}^{2}}{2}+\frac{\mathrm{R}_{2} l_{\mathrm{b}}^{3}}{2}-\mathrm{C}_{5} \mathrm{l}_{\mathrm{b}}$
$\mathrm{C}_{7}=\mathrm{C}_{5}+\frac{\mathrm{R}_{3} l_{\mathrm{c}}^{2}}{2}$
$\mathrm{C}_{8}=\frac{\mathrm{ql}_{\mathrm{c}}^{4}}{24}-\frac{\mathrm{l}_{\mathrm{c}}^{3}}{6}\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{1}\right)+\frac{\mathrm{l}_{\mathrm{c}}^{2}}{2}\left(\mathrm{R}_{1} \mathrm{l}_{\mathrm{a}}+\mathrm{R}_{2} \mathrm{l}_{\mathrm{b}}+\mathrm{R}_{3} \mathrm{l}_{\mathrm{c}}\right)-\mathrm{C}_{7} \mathrm{l}_{\mathrm{c}}$

Calculation example:

Take data input as follows:

$$
\begin{aligned}
& \mathrm{q}=150 \mathrm{lb} / \mathrm{in} \\
& 11=200 \mathrm{in} \\
& 12=1300 \text { in } \\
& 13=600 \mathrm{in} \\
& 14=100 \mathrm{in} \\
& \\
& \mathrm{do}=243 \text { in, Outside diameter of shell } \\
& \mathrm{di}=237 \mathrm{in}, \text { Inside diameter of shell } \\
& \mathrm{E}=1.2 \mathrm{E} 7 \mathrm{lb} / \mathrm{in}^{2}(\text { Modulus of Elasticity })
\end{aligned}
$$

Results:

Moment of Inertia (I) :
$I=\frac{\pi \cdot\left(d_{0}^{4}-d_{i}^{4}\right)}{64}=16288561\left(\right.$ in $\left.^{2}\right)$, Moment Inertia for hollow cylinder
Moment at the support:
$\mathrm{Ma}=-3000000 \mathrm{lb}-\mathrm{in}$
$\mathrm{Mb}=-2.37 \mathrm{E} 7 \mathrm{lb}-\mathrm{in}$
$\mathrm{Mc}=-750000 \quad \mathrm{lb}-\mathrm{in}$

Reactions at the support (R)
$\mathrm{R} 1=112371 \quad \mathrm{lb}$
$\mathrm{R} 2=1941587 \mathrm{lb}$
$R 3=23470.39 \mathrm{lb}$

Maximum deflection :
$y \max =0.01482$ in

Trend of the parameters are as follows :

Conclusion:

The beam model is not capable of analyzing the behavior of the kiln shell. The major reason for the difficulties of the beam model is in the support. Kiln shell in practice is supported by two rollers in each section so that it is different with beam model that consider one support in each section. Also, in practice the load is distributed inside of the kiln shell, however in beam model the load is distributed outside the beam.

In general, the beam model can usually be used to predict the trend of the deflection of kiln shell. This is possible because in the deflection formula there is term I (. moment of inertia), so that it can be used for different shapes of model, such as hollow cylinder.

From the trend line of the deflection, maximum deflection occurs in the position where two supports have the longest distance. On the other hand, it happens at the position where maximum bending moment occurs.
$\begin{array}{ll}\mathrm{Ma}=-.30000 \mathrm{E}+07 & \mathrm{Mb}=-.22668 \mathrm{E}+08 \quad \mathrm{Mc}=-.75000 \mathrm{E}+06 \\ \mathrm{R} 1=0.11237 \mathrm{E}+06 \quad \mathrm{R} 2=0.19416 \mathrm{E}+06 \quad \mathrm{R}=0.2\end{array}$

\mathbf{x} (in)	Shearing force (lb)	Bending Moment (1b-1n)	$\begin{aligned} & \text { inection } \\ & (\text { in }) \end{aligned}$
0.0	$0.00000 \mathrm{E}+00$	0.00000E+00	
25.0	$-.37500 \mathrm{E}+04$	-.46875E+05	
50.0	-.75000E+04	$-.18750 \mathrm{E}+06$	3E-02
75.0	$-.11250 \mathrm{E}+05$	-. $42188 \mathrm{E}+06$	$0.47313 \mathrm{E}-02$
100.0	- $15000 \mathrm{E}+05$	$-.75000 \mathrm{E}+06$	$0.37929 \mathrm{E}-02$
125.0 150.0	$-.18750 \mathrm{E}+05$ $-.22500 \mathrm{E}+05$	$-.11719 \mathrm{E}+07$ $-16875 \mathrm{E}+07$	0.28520E-02
175.0	$-+22500 \mathrm{E}+05$ $-.26250 \mathrm{E}+05$	$16875 \mathrm{E}+07$ $.22969 \mathrm{E}+07$	$0.19074 \mathrm{E}-02$
200.0	-. $30000 \mathrm{E}+05$	-. $30000 \mathrm{E}+07$	$\begin{aligned} & 0.95740 \mathrm{E}-03 \\ & 0.36672 \mathrm{E}-10 \end{aligned}$
200.0	$0.82371 \mathrm{E}+05$	$-.30000 \mathrm{E}+07$	-.13097E-09
225.0	$0.78621 \mathrm{E}+05$	$-.98760 \mathrm{E}+06$. $96552 \mathrm{E}-03$
250.0	$0.74871 \mathrm{E}+05$	$0.93105 \mathrm{E}+06$	$19342 \mathrm{E}-02$
275.0	0.71121E+05	$0.27559 \mathrm{E}+07$	2
300.0	$0.67371 \mathrm{E}+05$	$0.44871 \mathrm{E}+07$. $38569 \mathrm{E}-02$
325.0	$0.63621 \mathrm{E}+05$	$0.61245 \mathrm{E}+07$	$-.47996 \mathrm{E}-02$
350.0	$0.59871 \mathrm{E}+05$	$0.76681 \mathrm{E}+07$	$-.57227 \mathrm{E}-02$
375.0	0.56121E+05	$0.91180 \mathrm{E}+07$	-. $66212 \mathrm{E}-02$
400.	$0.52371 \mathrm{E}+05$	$0.10474 \mathrm{E}+08$	-.74907E-02
425.0	$0.48621 \mathrm{E}+05$	$0.11737 \mathrm{E}+08$. $83267 \mathrm{E}-02$
450.0	$0.44871 \mathrm{E}+05$	$0.12905 \mathrm{E}+08$	-. $91252 \mathrm{E}-02$
475.0	0.41121E+05	$0.13980 \mathrm{E}+08$.98824E-02
500	$0.37371 \mathrm{E}+05$	$0.14961 \mathrm{E}+08$. $10595 \mathrm{E}-01$
525	$0.33621 E+05$	$0.15849 \mathrm{E}+08$	$11260 \mathrm{E}-01$
55	0.29871E+05	$0.16642 \mathrm{E}+08$	- $.11874 \mathrm{E}-01$
575	0.26121E+05	$0.17342 \mathrm{E}+08$	-. $12435 \mathrm{E}-01$
600.0	$0.22371 \mathrm{E}+05$	$0.17948 \mathrm{E}+08$	$-.12940 \mathrm{E}-01$
625.0	$0.18621 \mathrm{E}+05$	$0.18461 \mathrm{E}+08$	- $+13388 \mathrm{E}-01$
650.0	0.14871E+05	$0.18879 \mathrm{E}+08$	- $+13777 \mathrm{E}-01$
675.0	$0.11121 \mathrm{E}+05$	$0.19204 \mathrm{E}+08$	$-.14106 \mathrm{E}-01$
700.0	$0.73709 \mathrm{E}+04$	$0.19435 \mathrm{E}+08$	-. 14374E-01
72	$0.36209 \mathrm{E}+04$	$0.19573 \mathrm{E}+08$	$-.14579 \mathrm{E}-01$
75	$-.12905 \mathrm{E}+03$	$0.19617 \mathrm{E}+08$	$-.14722 \mathrm{E}-01$
775	$-.38791 \mathrm{E}+04$	$0.19566 \mathrm{E}+08$	-.14802E-01
800.0	-. $76291 \mathrm{E}+04$	$0.19423 \mathrm{E}+08$	$=-14819 \mathrm{E}-01$
825	-. $11379 \mathrm{E}+05$	$0.19185 \mathrm{E}+08$	- $14775 \mathrm{E}-01$
650	-. $15129 \mathrm{E}+05$	$0.18854 \mathrm{E}+08$	$\sim+14669 \mathrm{E}-01$
8	$-.18879 \mathrm{E}+05$	$0.18429 \mathrm{E}+08$	$-.14502 \mathrm{E}-01$
900.0	-. $22629 \mathrm{E}+05$	$0.17910 \mathrm{E}+08$	$-.14277 \mathrm{E}-01$
	-. $26379 \mathrm{E}+05$	$0.17297 \mathrm{E}+08$	-. $13995 \mathrm{E}-01$
	-. $30129 \mathrm{E}+05$	$0.16591 \mathrm{E}+08$	$-.13657 \mathrm{E}-01$
975.0	-.33979E+05	$0.15791 \mathrm{E}+08$	$13267 \mathrm{E}-01$
1000.0	-. $37629 \mathrm{E}+05$	$0.14897 \mathrm{E}+08$	-. $12826 \mathrm{E}-01$
O25	$-.41379 \mathrm{E}+05$	$0.13909 \mathrm{E}+08$	-. $12337 \mathrm{E}-01$
50	$-.45129 \mathrm{E}+05$	$0.12828 \mathrm{E}+08$	-. $11804 \mathrm{E}-01$
75	$-.48879 \mathrm{E}+05$	$0.11653 \mathrm{E}+08$	-. $11230 \mathrm{E}-01$
1100.0	-. $52629 \mathrm{E}+05$	$0.10384 \mathrm{E}+08$. $10618 \mathrm{E}-01$
1125.0	-. $56379 \mathrm{E}+05$	$0.90213 \mathrm{E}+07$	
1150.0	-. $60129 \mathrm{E}+05$	$0.75649 \mathrm{E}+07$	2
1175	-. $63879 \mathrm{E}+05$	$0.60148 \mathrm{E}+07$. $86027 \mathrm{E}-02$
1200.0	-. $.67629 \mathrm{E}+05$	$0.43709 \mathrm{E}+07$	
1225.0	$-.71379 \mathrm{E}+05$	$0.26333 \mathrm{E}+07$, $615162 \mathrm{E}-02$
1250.0	-. $75129 \mathrm{E}+05$	$0.80199 \mathrm{E}+06$	
1275.0	$-.78879 \mathrm{E}+05$	$-.11231 \mathrm{E}+07$	E-02
1300.0	-. $82629 \mathrm{E}+05$	- $+31420 \mathrm{E}+07$	$-.49365 E-02$ $-.42085 E-02$
1325.0	-.86379E+05	-. $52546 \mathrm{E}+07$	$-.42085 E-02$ $-.34974 \mathrm{E}-02$
1350.0	-. $90129 \mathrm{E}+05$, $4609 \mathrm{E}+07$	$28102 \mathrm{E}-02$
1375.0	-. $93879 \mathrm{E}+05$	97610E+07	-02
1400.0	-. $97629 \mathrm{E}+05$	12155E+08	-02
1425.0	-. $10138 \mathrm{E}+06$	-. $14642 \mathrm{E}+08$	-03
1450.0	-. $10513 \mathrm{E}+06$	-. $17224 \mathrm{E}+08$	45157E-03
1475.0	$-.10888 \mathrm{E}+06$	19899E+08	$-.26152 E-07$
1500.0	$-.11263 \mathrm{E}+06$		$0.36479 \mathrm{E}-06$
1500.0	$0.81530 \mathrm{E}+05$	206	$0.38176 \mathrm{E}-03$
1525.0	$0.77780 \mathrm{E}+05$	20676E+08	$0.69746 \mathrm{E}-03$
1550.0	$0.74030 \mathrm{E}+05$	$18779 \mathrm{E}+08$ $16975 \mathrm{E}+08$	0.95270E-03
1575.0	$0.70280 \mathrm{E}+05$	-. $16975 \mathrm{E}+08$	$0.11539 \mathrm{E}-02$
1600.0	$0.66530 \mathrm{E}+05$	-. $15265 \mathrm{E}+08$	0.13061E-02
1625.0	$0.62780 \mathrm{E}+05$		0.14148E-02
1650.0	$0.59030 \mathrm{E}+05$	8	$0.14844 \mathrm{E}-02$
1675.0	$0.55280 \mathrm{E}+05$	7	$0.15200 \mathrm{E}-02$
1700.0	$0.51530 \mathrm{E}+05$		$0.15256 \mathrm{E}-02$
1725.0	$0.47780 \mathrm{E}+05$		$0.15053 \mathrm{E}-02$
1750.0	$0.44030 \mathrm{E}+05$	- $+69729 \mathrm{~B}+07$	

//me3/users/grade/arra/project/beandat

$\begin{array}{llll}1775.0 & 0.40280 \mathrm{E}+05 & -.59190 \mathrm{E}+07 & 0.14626 \mathrm{E}-02 \\ 1800.0 & 0.36530 \mathrm{E}+05 & -.49589 \mathrm{E}+07 & 0.1400 \mathrm{E}-02\end{array}$
$\begin{array}{llll}1800.0 & 0.36530 \mathrm{E}+05 & -.49589 \mathrm{E}+07 & 0.14626 \mathrm{E}-02 \\ 1825.0 & 0.32780 \mathrm{E}+05 & -.40925 \mathrm{E}+07 & 0.14008 \mathrm{E}-02\end{array}$
$\begin{array}{llll}1825.0 & 0.32780 \mathrm{E}+05 & -.40925 \mathrm{E}+07 & 0.14008 \mathrm{E}-02 \\ 1850.0 & 0.29030 \mathrm{E}+05 & -.33199 \mathrm{E}+07 & 0.13234 \mathrm{E}-02\end{array}$
$1875.0 \quad 0.25280 \mathrm{E}+05 \quad-.26410 \mathrm{E}+07 \quad 0.12327 \mathrm{E}-02$
$1900.0 \quad 0.21530 \mathrm{E}+05 \quad-.20559 \mathrm{E}+07 \quad 0.11314 \mathrm{E}-02$
$\begin{array}{llll}1900.0 & 0.21530 \mathrm{E}+05 & -.20559 \mathrm{E}+07 & 0.10215 \mathrm{E}-02\end{array}$
$\begin{array}{llll}1925.0 & 0.17780 \mathrm{E}+05 & -.15646 \mathrm{E}+07 & 0.90522 \mathrm{E}-02\end{array}$
$\begin{array}{llll}1950.0 & 0.14030 \mathrm{E}+05 & -.11669 \mathrm{E}+07 & 0.90522 \mathrm{E}-03 \\ 1975.0 & 0.10280 \mathrm{E}+05 & -.78413 \mathrm{E}-03\end{array}$
$2000.0 \quad 0.65296 \mathrm{E}+04 \quad-.65298 \mathrm{E}+06 \quad 0.65881 \mathrm{E}-03$
$2025.0 \quad 0.27796 \mathrm{E}+04 \quad-.53661 \mathrm{E}+06 \quad 0.53099 \mathrm{E}-03$
$\begin{array}{llll}2025.0 & 0.27796 \mathrm{E}+04 & -.53661 \mathrm{E}+06 & 0.40061 \mathrm{E}-03 \\ 2050.0 & -.97040 \mathrm{E}+03 & -.51397 \mathrm{E}+06 & 0.26919 \mathrm{E}-03\end{array}$
$2050.0-.97040 \mathrm{E}+03 \quad-.51397 \mathrm{E}+06 \quad 0.26919 \mathrm{E}-03$
$2075.0-.47204 \mathrm{E}+04 \quad-.58514 \mathrm{E}+06 \quad 0.13551 \mathrm{E}-03$
$\begin{array}{llll}2100.0 & -.84704 \mathrm{E}+04 & -.75002 \mathrm{E}+06 & 0.15021 \mathrm{E}-06\end{array}$
$\begin{array}{llll}2100.0 & 0.15000 \mathrm{E}+05 & -.75002 \mathrm{E}+06 & 0.17167 \mathrm{E}-06 \\ 2125.0 & 0.11250 \mathrm{E}+05 & -.42189 \mathrm{E}+06 & -.13727 \mathrm{E}-03\end{array}$
$\begin{array}{llll}2125.0 & 0.11250 \mathrm{E}+05 & -.42189 \mathrm{E}+06 & -.13727 \mathrm{E}-03\end{array}$
$2150.0 \quad 0.75000 \mathrm{E}+04 \quad-.18750 \mathrm{E}+06 \quad-.27608 \mathrm{E}-03$
$2175.0 \quad 0.37500 \mathrm{E}+04 \quad-.46864 \mathrm{E}+05 \quad-.41595 \mathrm{E}-03$
$2200.0-.19531 \mathrm{E}-02-.16250 \mathrm{E}+02-.55498 \mathrm{E}-03$

Maximum Bending Moment $=0.20676 \mathrm{E}+08 \mathrm{lb}-$ in
Maximum Deflection $\quad=0.14819 \mathrm{E}-01 \mathrm{in}$

ANSYS 5.0 A-31
JAN 0
0
00:00:00
PLOT NO. 6
NODAL SOLUTION
STEP=1
SUB $=1$
TIME=1
SEQV
(AVG)
TOP
DMX $=228.804$
SMN $=2631$
SMX $=.298 \mathrm{E}+07$
$\mathrm{SMXB}=.422 \mathrm{E}+07$
U
PRES

2631
333675 664720
995764
$.133 \mathrm{E}+07$
$.166 \mathrm{E}+07$
$.199 \mathrm{E}+07$
$.232 \mathrm{E}+07$
$.265 \mathrm{E}+07$
$.298 \mathrm{E}+07$

REFERENCES

1. ANSYS User's Manual Revision 5.0
2. David. S Burnett, Finite Element Analysis, Addison-Wesley, 1988
3. Shigley and Mischke, Engineering Mechanical Design, McGraw-Hill, 1989
4. Timoshenko and Young, Theory of Structures, McGraw-Hill, 1965
5. Van Den Broek, Elastic Energy Theory, John Wiley and Sons, 1942

APPENDIX

ANSYS SOLUTION

- ANALYSIS OF THE TORSIONAL SHEARING STRESS.
- TEMPERATURE PROFILE ANALYSIS ALONG RADIAL DIRECTION OF A KILN
- RADIAL AND LONGITUDINAL DEFLECTION ANALYSIS OF THE KILN'S SHELL.

FORTRAN PROGRAMS

- TEMPERATURE PROFILE ANALYSIS ALONG RADIAL DIRECTION OF A KILN.
- RADIAL DEFLECTION ANALYSIS OF THE KILN'S SHELL.
- LONGITUDINAL DEFLECTION ANALYSIS OF THE KILN'S SHELL.

ANSYS SOLUTION

ANALYSIS OF THE TORSIONAL SHEARING STRESS


```
/batch
!--------------------------------------------------------------------
! I
! ---------------- !
by: Gembong Baskoro !
!------------------------------------------------------------------------
/verify,Torque on the Shell Kiln
/com,-------------- Build the Model
/filnam,Torsi
/title,Model Problem
/unit,bin ! British system using inch
/show, x11 ! Graphic driver
! Define parameter
RHOS=0.281 ! Mass density of Shell ( lb/in^3)
MUSR=0.29 ! Poisson ratio of shell kiln
EXX=1.2E7 ! Young modulus of shell kiln
r=120-1.5-12 ! Inner radius of refractorie
L=1250 ! Length of Kiln
tr=12 ! thickness of refractorie
ts=1.5 ! thickness of shell
force=5.04e6/r
/prep7
/pnum,line,1
/pnum,area,1
/pnum, kpoi,1
wpave,r+tr,0
rectng,0,ts,0,L
wpave,r,o
et,1,plane25 ! Et for shell
mp,ex,1,exx ! mp for shell
mat,1
eshape,2
esize,,5
lesize, 2,.,10
amesh,1
/angle,1,-90,zs,1
/angle,1,60,xs,1
/angle,1,20,ys,1
/angle,1,-10,zs,1
/replot
finish
/solu
/pbc,all,,1
dk,1,all
dk,2,all
f,7,fz,-force
solve
/show,gem
```

```
finish
```

```
oct 04 18:47 1994 hpcl:/hpc3/users/grads/gembong/project/sorem Page 2
```

```
/post1
set,1
/psf,defa
/title, Equivalent stress,distibution
plnsol,s,eqv
/zoom,1,296.46,66.357,-99.723,32.209
/zoom,1,293.16,73.194,-100.46,2.5027
/zoom,1,off
lpath,17,7
/title, Graph of eqv. stresses along cross section of model
/view, all,0,0,1
/angl,all,0
plsect,s,eqv
fini
```


ANSYS SOLUTION

TEMPERATURE PROFILE ANALYSIS ALONG RADIAL DIRECTION OF A KILN

```
(batch
T Temperature distribution on radial direction of kiln
/verify,MP
/title,Temperatur distribution
/units,bin : British system using inch
/show,\times11 ! Graphic driver
!Define parameters
fci=0.0139
fco=0.0347
cb=0.015625 ! Thermal conductivity of refraktorie
cs=0.7833
Tiav=1600
T0=50
R1=120-1.5-12
R2=120-1.5
R3=120
    ! Thermal conductivity of shell kiln
    Inside temperture
    Outside temperature
    Inner radius of refractorie ( in )
    Inner radius of shell kiln ( in)
    Inner radius of kiln ring ( in )
/prep7
pcirc,R2,R3,270,360
pcirc,R1,R2,270,360
et,1,plane55 I Define element type
mp,kxx,1,cs ! Material properties of shell kiln
mp,kxx, 2, cb
Material properties of magnesite chrome
aglue,all
aplot
eshape, 2
esize,,5
lesize, 7,5,15
mat,2
amesh,2
esize,,2
lesize, 5,1,15
mat,1
amesh,3
finish
/solu
sfl,7, conv, fci,,Tiav
sf1,1,conv,fco,,To
solve
finish
    /post1
    /show, temper
    Bet,1
    /psf,defa
    /edge,all,1
    plnsol, temp
```


ANSYS SOLUTION

RADIAL AND LONGITUDINAL DEFLECTION ANALYSIS OF THE KILN'S SHELL

```
/batch
/verify, Deflection on the longitudinal direction
/com,
/filnam, deflek
/unit,bin
                                    1 British system
! define parameter
rhos=0.281
rhus=0.28 musr=0.29 \Mass density of shell ( lb/in^3 )
exx=1.2e7
tr=1.5
ri=120-tr ! thickness of shell
ro=120+tr
L=2200
L1=200
L2 =1300
L}3=60
L4=100
/prep7
1/pnum,line,1
1/pnum, kpoi,1
!/pnum,volu,1
/pnum,area,1
R,1,tr
csys,1
k,1
k,2,ro,-60
k,3,ro,90
k,4,ro,240
1,2,3
1,3,4
1,4,2
csys,0
k,5,0,0,-14
k,6,0,0, -(14+13)
k,7,0,0,-(14+13+12)
k,8,0,0,-1
1,1,5
1,5,6
1,6,7
1,7,8
/angle, 1,60,ys,1
langle,1,10,xs,1
lplot
adrag, 1, 2, 3, ,, 4
adrag,8,11,13',',,5
adrag,14,17,19,',',6
```

```
adrag,20,23,25,.,.7
aglue,all
nummrg, all
numcmp,all
et, 1, shell63
mp, ex,1, exx
mp, nuxy,1,musr
aplot
eshape,2
lesize,1,., 30
lesize,2,,,30
lesize,3,.,6
esize,,14/25
mat,1
amesh,1,3,1
esize,,13/50
mat,1
amesh,4,6,1
esize,,12/100
mat,1
amesh, 7, 9,1
esize,,11/50
mat,1
amesh,10,12,1
fini
/solu
/show, hasil
/pbc,all,,1
dk,17,all
dk,14,all
dk,11, all
dk,15,uy
dk,12,uy
dk,9,uy
/psf,pres,.,
sfa,3,,pres,-250
sfa,6,,pres,-250
sfa,9,,pres,-250
sfa,12,,pres,-250
aplot
eplot
solve
save
fini
/post1
set,1
/pbc,u, ,1
/psf,pres,2
/edge,all,1
pldisp,2
/title,, Equivalent Stress Distribution
plnsol,s,eqv
/view,all,0,0,1
```

```
/angl,all,o
/replot
/view,all,1,0,0
/angl,1,180,ys,1
/replot
/title,Deflection
pldisp,2
/view,all, 0, 0,1
/angl,all,0
/replot
/view, all,1,0,0
/angl,1,180,ys,1
/replot
fini
```


FORTRAN PROGRAM

TEMPERATURE PROFILE ANALYSIS ALONG RADIAL DIRECTION OF A KILN

```
c
c Temperature distribution along r-direction of a Kiln
c Sept.,22,94 by Gembong Baskoro
c
    real T(4),Ti,To,r(4),k(4),hi,ho,c2,rr
    real sum,fac,qm,Temp
    real rmax,rmin
    integer i,a
    open(unit=10,file='temp')
    r(1)=120.-1.5-12.
    r(2)=120.-1.5
    r(3)=120
    k(1)=0.015625
    k(2)=0.7833
    Ti=1600.
    To=50.
    hi=0.0139
    ho=0.0347
    rmin=105.
    rmax}=130\mathrm{ .
    sum=0.
    do 10 i=1,2
        sum=sum+(1./k(i))*log(r(i+1)/r(i))
10 continue
    fac=(1./(r(i)*hi))+sum+(1./(r(3)*ho))
    qm=(Ti-To)/fac
    do 20 i=1,3
        if(i.eq.1) then
        T(1)=Ti-(qm/(r(i)*hi))
        else
        T(i)=T(i-1)-((qm* log(r(i)/r(i-1)))/k(i-1))
    endif
20 continue
    write(10,'(5x,a)')' Temperature on the layers '
    write(10,*)
    do 25 i=1,3
    write(10,110)i,r(i),i,T(i)
25 continue
write(10,*)
```

```
    write(10,"(8x,21('-'))")
    write(10,'(8x,a)')' r Temperature'
    write(10,"(8x,21('-'))")
    write(10,*)
    do 30 rr-rmin,rmax
    if (rr.lt.r(1)) then
        a=1
        cl=(T(a)-Ti)/log(r(a)/rmin)
        c2=T(a)-cl*}\operatorname{log}(\textrm{r}(\textrm{a})
        Temp=c1* log(rr)+c2
        elseif (rr.ge.r(1).and.rr.le.r(3)) then
        call con(rr,T,r,c1,c2)
        Temp=c1* log(rr)+c2
    else
        a=3
        cl=(To-T(a))/log(rmax/r(a))
        c2=T(a)-cl* log(r(a))
        Temp=cl* log(rr)+c2
        endif
    write(10,100)rr,Temp
30 continue
    write(10,"(8x,21('-'))")
100 format(9x,f5.1,2x,f12.5)
110 format(1x,'r(',11,') = ',f5.1,2x,'T (',i1,') = ',f10.5)
    close(unit=10)
    end
    subroutine con(x,T,r,cl,c2)
    real x,T(3),r(3),cl,c2
    integer i
    if (x.ge.r(1).and.x.lt.r(2)) then
        i=1
    else
        i=2
    endif
    cl=(T(i)-T(i+1))/log(r(i)/r(i+1))
    c2=T(i)-c1* log(r(i))
    return
    end
```


FORTRAN PROGRAM

RADIAL DEFLECTION ANALYSIS OF THE KILN'S SHELL


```
Deflection analysis of the kiln's shell
    Genbong Baskoro
Program deflek
    real shi,M,pl,shil,teta,=shi,th, sec
    real R,Rx, Ry,Mx,My,inc,a,tp,del,itg
    real teta2,shi2
c open file
    open(unit-10,file=*C:Improjectlmpshell*)
c define constans
pi-acos[-1.)
shi1=30.*pi/180
tn-tan(shil)
sec-1./cos(shil)
7p-2.*cos(shil)
R=1.
inc-2
a=0
e
c write the heading
e
    write{10,*(1x,116["-*)]*)
```



```
    ** Tx Ty Tel Ty dx dy*
    write(10,*(1x,116["-*)]*)
    write(10,*)
c
e calculation procedures
    do }10\mathrm{ teta=a,180,inc
        shi-pi*teta/100.
        mshi=(1./(2-*pi))*(sec-1.-shil**an(shil)*cos(shi))
        if (teta.gt.150) then
            M=ashi+(sin(shi+shil)/Tp)
            T--[1./(2.**i))*shi1**旃* cos (shi) +(\operatorname{sin}(\operatorname{shi}+\operatorname{shi}1)/Tp)
            call inte(shi,itg)
            del-itg
        else
            M-mshi
            T-- (1./(2.*pi))*shi1*tn*}\operatorname{cos}(\textrm{shi}
                    call intel(shi,itg)
                    del=itg
                endif
c
e transform to cartesian coordinate
e
teta2=90.-teta
shi2=pi*teta2/180.
Rx=R*}\operatorname{cos(sh12)
Ry-R*sin(shi2)
Mx={1,-M)* cos (shiz)
My=(1,-M)*sin(sh12)
TX=(1.-T)*\operatorname{cos (shi2)}
Ty={1.-T)*\operatorname{sin}(\operatorname{shi}2)
dx=(1 _-del)* cos(shi2)
dy=(1.-del)*sin}(shi2
c
c urite the result
write(10,100) teta2,R\ddot{x},\textrm{Ry},\textrm{M},\textrm{Mx},\textrm{My},\textrm{T},\textrm{Tx},\textrm{Ty},\textrm{del},\textrm{dx},\textrm{dy}
10 continue
100 format(1x, 45,1,11(1x, 47.4))
    close(unit=10)
    end
C subroutine for calculating integral using sirpson rule
```

```
        subroutine inte(b,itg)
        real a,b,itg,dl,10,fnl
        integer j
        a=0.
        m=100
        h=(b-a)/m
        dl=0.
        10=0.
        do }10\textrm{j}=1,\textrm{m}/
            dl=dl+h
            lo=10+4* fnl (dl)
            dl=dl+h
            10=10+2*fn1(d1)
continue
itg=(h/3.)*(fnl(a)+10-fn1(b)
end
c function to be integrate
*-----------------------------------------
    function fnl(x)
    real fnl,pi,sec, shil
        pi=acos(-1.)
        shil=30*pi/180
        sec=1./cos(shil)
        fnl=(((1./(2.*pi))*(sec-1.-shil*tan(shi1)*cos(x)))
    + +(sin(x+\operatorname{shil)/(2.* cos(shil))))*\operatorname{sin}(x)}+(\operatorname{sin}
        return
        end
        subroutine intel(b,itg)
        real a,b,itg,dl,lo, fn2
        integer j
        a=0.
        m=100
        h=(b-a)/m
        dl=0.
        10=0.
        do 10 j=1,m/2
            dl=d1+h
            10=10+4.*fn2(d1)
            d1=d1+h
                    10=10+2*fn2(d1)
1 0
itg=(h/3.)*(fn2 (a)+lo-fn2(b))
end
c function to be integrate
    function fn2(x)
real fn2,pi,sec,shil,x
            pi=acos(-1.)
            shil=30.*pi/180
            sec=1./cos(shil)
            fn2=((1./(2.*pi))*(sec-1.-shil*tan(shil)*cos(x)))*\operatorname{sin}(x)
            return
end
```


FORTRAN PROGRAM

LONGITUDINAL DEFLECTION ANALYSIS OF THE KILN'S SHELL
** Longitudinal Deflection of a Shell \quad Using Beam Nodel
real q, 11, 12, 13, 14, do, d1, E, I, M, Na, Mb, Mc, 1a, 1b, 1c, 1d, R1, R2, R3
real C1, C2, C3, C4, C5, C6, C7, C8, p1, X, y, v, maxM, maxy
open (unit=10, f11e='beamat')
$\mathrm{p} 1=\mathrm{a} \cos (-1$.
$q=150$
$11=200$
$12=1300$
=
do $=243$
di $=237$
$\mathrm{E}=1.2 \mathrm{E} 7$
$1 \mathrm{a}=11$
$b=11+$
$c=11+12+13$
$1 \mathrm{~d}=11+12+13+14$
$I=(1, / 64) * p i *.($ do**4-di**4)
$\mathrm{Ma}=-(1,12), * \mathrm{q}^{*} 11 * * 2$
$M \mathrm{c}=-(1, / 2), * q^{*} 14^{* * 2}$
$M \mathrm{~b}=((-\mathrm{q} / 4) *(12 * * 3+13 * * 3)-\mathrm{Ma} * 12-\mathrm{Mc} * 13) /(2 *(12+13))$
$R 1=(1, / 12) *(\mathrm{Mb}+(\mathrm{q} / 2) *.(11+12) * * 2)$
$R .3=(1 . / 13) *(M b+(q / 2) *.(13+14) * * 2)$
$R 2=q^{*} 1 d-(R 1+R 3)$
$C 3=((q / 24) *.(1 b * * 4-1 a * * 4)+(R 1 / 2) *.(-(2 . / 3) * 1 a * * 3-.(1 . / 3) * 1 b * * 3 *$,
(a*1b**2))/(lb-1a)
$C 4=(1 . / 24) *.\left(q^{*} 1 a * * 4\right)+(1, / 3) * R 1 * 1 a * * 3-.C 3 * 1 a$
$C 1=C 3-(1,12) R 1 * *$,

$C 6=(1 . / 24) * q * 1 b * * 4-.(1 . / 6) * 1 b * * 3 *.(R 1+R 2)+(1 . / 2) *.(R 1 * 1 a * 1 b * 2)+$
$+\quad C 6=(1,12) * R 2 * 1 b * * 3-.c 5 * 1 b$

write $(10,150) \mathrm{Ma}, \mathrm{Mb}, \mathrm{Mc}$
wite $(10,200)$ R1, R2, R3
write $(10, *)$

write(10,*), $\times \quad \begin{gathered}\text { Shearing } \\ \text { force }\end{gathered}$ Mending Deflection

write(10,*)

$\max M=0$

$\operatorname{maxy}=0$
do $10 x=0,1 d, 25$
11 ($x . g e .0$ and. $x \cdot 1 e .1 a$) then $\mathrm{V}=-\mathrm{q} \times \mathrm{x}$
$M=-(1, / 2,)^{*} q^{*} x^{* *} 2$
$y=(1 . /(E * I)) *\left[-(1, / 24). * q^{*} x^{* * 4}+C 1 * x+C 2\right)$
write $(10,100) x, v, K, y$
endif
if ($x, g e, 1 a, a n d, x, 1 e, 1 b$) then
$v=-q^{*} x+R 1$
$\mathrm{M}=-(1 . / 2). * q^{*} x^{* *} 2+R 1 *(x-1 a) \quad(1 . / 24). * q^{*} x^{* *} 4+(1, / 6) * R .1 * x^{* * 3-(1 . / 2 .) *}$
$\mathrm{y}=\left(1, /\left(\mathrm{E}^{*} \mathrm{I}\right)\right) *\left(-(1 . / 24 .)^{*} \mathrm{C}\right.$ R1*1a****2+C3*x+C4)
write $(10,100) x, v, K, Y$
endif
if $(x, g e, 1 b$, and $x, 1 e, 1 c)$ then

$\mathrm{v}=-\mathrm{q}^{*} \mathrm{x}+\mathrm{R} 1+\mathrm{R} 2$

$\mathrm{M}=-(1, / 2,)^{*} \mathrm{q}^{*} \mathrm{x}^{* *} 2+\mathrm{R} 1 *(\mathrm{x}-1 \mathrm{a})+\mathrm{R} 2 *(\mathrm{x}-1 \mathrm{~b})$
$Y=\left(1 . /\left(E^{*} I\right)\right) *\left(-(1 . / 24). * q^{*} x^{* *} 4+(1 . / 6) * R .1 * x^{* * 3-(1 . / 2 .) *}\right.$
R1* $1 \mathrm{a} * \mathrm{x} * * 2+(1 . / 6) * R 2 * x * * 3-.(1 . / 2) * R 2 * 1 b * x * 2+.C 5 * x+C 6)$ endif
if (x.ge.lc.and. $x . l e .1 d$) then
$\mathrm{v}=-\mathrm{q}^{*} \mathrm{x}+\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3$
$\mathrm{v}=-\mathrm{q}^{*} \mathrm{x}+\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3$
$\mathrm{M}=-(1 . / 2 .)^{*} \mathrm{q}^{*} \mathrm{x}^{* *} 2$
$\mathrm{M}=-(1 . / 2). * \mathrm{q}^{*} \mathrm{x}^{* *} 2+\mathrm{R} 1 *(\mathrm{x}-1 \mathrm{a})+\mathrm{R} 2 *(\mathrm{x}-1 \mathrm{~b})+\mathrm{R} 3 *(\mathrm{x}-1 \mathrm{c})$
$\mathrm{y}=(1 . /(\mathrm{E}) \mathrm{I}))^{*}\left(-(1.124 .) * \mathrm{q}^{*} \mathrm{x}^{* * 4}+(1.16) * \mathrm{R}\right)^{*} \mathrm{x} * 3$
 $(1.16) * R 3 * x * * 3-.(1 . / 2) * R 3 * 1 C * x * * 2+.C 7 * x+C 8)$ write(10, 100) x, v, M, y
endif
if (x.eq.la.or.x.eq.lb.or.x.eq.lc) goto 10
if (abs (M).gt maxM) $\operatorname{maxM}=a b s(M)$
if (abs (y) .gt . maxy) maxy $=a b s(y)$
continue
write $(10, *)$
write $(10, *)$
write $(10,250)$ maxM
write $(10,300)$ maxy
close (unit=10)
100
150
200
250
300
format ($1 \mathrm{x}, \mathrm{f7} .1 .3(2 \mathrm{x}, \mathrm{e} 11.5)$)
format ($1 \mathrm{x},{ }^{\prime} \mathrm{Ma}=\prime$, e11.5.2x, ${ }^{\prime} \mathrm{Mb}=$, ,e11.5,2x,'Mc=',e11.5)

format (1 x ,' Maximum Bending Moment $=$ ', ell.5, ' $1 \mathrm{~b}-\mathrm{in}$ ')
format (1 x, ' Maximum Deflection $=$, ell.5, in ')
end
end

DERIVATION FORMULA IN CHAPTER 4

A free-body sketch of the shell is shown below:
The model of Kiln's Shell

Reaction on the support:
$\mathrm{R} 1=\mathrm{R} 2=\frac{\mathrm{Q}}{2 \operatorname{Cos} \phi 1}$
From the free body diagram, the bending moment M can be derived below:
between $\phi=0$ and $\phi=\pi$, is

$$
\begin{equation*}
\mathrm{M}_{\mathrm{A}-\mathrm{C}}=\mathrm{M}_{1}-\mathrm{T}_{1} \cdot \mathrm{R}(1-\cos \phi) \tag{a}
\end{equation*}
$$

between $\phi=\pi-\phi 1$ and $\phi=\pi$, is

$$
\begin{equation*}
M_{C-D}=M_{1}-T_{1} \cdot R(1-\cos \phi)-\frac{Q}{2} R \sin (\phi-\phi 1) \tag{b}
\end{equation*}
$$

Since the tangents to the shell at points A and D remain horizontal,
$\int_{\mathrm{A}}^{\mathrm{D}} \operatorname{Md\phi }=0$
therefore

$$
\int_{0}^{(\pi+\phi 1)} M d \phi+\int_{(\pi-\phi 1)}^{\pi} M d \phi=0
$$

$\int_{0}^{\pi}\left\{M_{1}-T_{1} \cdot R(1-\cos \phi)\right\} d \phi-\int_{(\pi-\phi 1)}^{\pi} \frac{Q}{2} R \sin (\phi-\phi 1) d \phi=0$
or
$M_{1}-T_{1} \cdot R=\int_{(\pi-\phi 1)}^{\pi} \frac{Q}{2} R \sin (\phi-\phi 1) d \phi$
Since the horizontal displacement of point, A relative to point D is zero then.
$\int_{A}^{D} M \cos \phi d \phi=0$
therefore
$\int_{0}^{\pi}\left\{\mathrm{M}_{1}-\mathrm{T}_{1} \cdot R(1-\cos \phi)\right\} \cos \phi \mathrm{d} \phi-\int_{(\pi-\phi 1)}^{\pi} \frac{\mathrm{Q}}{2} \mathrm{R} \sin (\phi-\phi 1) \cos \phi \mathrm{d} \phi=0$
Thus
$\frac{\mathrm{T}_{1} \cdot \mathrm{R} \cdot \pi}{2}=\int_{(\pi-\phi 1)}^{\pi} \frac{\mathrm{Q}}{2} \mathrm{R} \sin (\phi-\phi 1) \cos \phi \mathrm{d} \phi$
Solving equations (c) and (d) simultaneously, the result is
$M_{1}=\frac{\mathrm{Q}_{1} \cdot R}{2 \pi \cos \phi 1}\left(1-\phi 1 \cdot \sin \phi 1 \cdot \cos \phi 1+\sin ^{2} \phi 1\right), T_{1}=-\frac{\mathrm{Q}_{1} \cdot R}{2 \pi \cos \phi 1} \sin ^{2} \phi 1$

Finally plug equation (e) into (a), and (b) to get:
Moments
$M_{A}^{C}=\frac{Q \cdot R}{2 \pi}(\sec \phi 1-1-\phi 1 \cdot \tan \phi 1 \cdot \cos \phi 1)$
$\mathrm{M}_{\mathrm{C}}^{\mathrm{D}}=\frac{\mathrm{Q} \cdot \mathrm{R}}{2 \pi}(\sec \phi 1-1-\phi 1 \cdot \tan \phi 1 \cdot \cos \phi 1)+\frac{\mathrm{Q} \cdot \mathrm{R}}{2 \cos \phi 1} \sin (\phi+\phi 1)$
in dimensionless :
$\frac{M_{A}^{C}}{Q \cdot R}=\frac{1}{2 \pi}(\sec \phi 1-1-\phi 1 \cdot \tan \phi 1 \cdot \cos \phi 1)$
$\frac{\mathrm{M}_{\mathrm{C}}^{\mathrm{D}}}{\mathrm{Q} \cdot \mathrm{R}}=\frac{1}{2 \pi}(\sec \phi 1-1-\phi 1 \cdot \tan \phi 1 \cdot \cos \phi 1)+\frac{\mathrm{Q} \cdot \mathrm{R}}{2 \cos \phi 1} \sin (\phi+\phi 1)$
these results appear in chapter 4

