SCARA FOR FMS LAB EQUIPMENT

By

BRANDON MATTHEW SAERANG 11901014

SWISS GERMAN UNIVERSITY The Prominence Tower Jalan Jalur Sutera Barat No. 15, Alam Sutera Tangerang, Banten 15143 - Indonesia

June 2023

STATEMENT BY THE AUTHOR

I hereby declare that this submission is my own work and to the best of my knowledge, it contains no material previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma at any educational institution, except where due acknowledgement is made in the thesis.

W	
Brandon Matthew Saerang	28 3-14 2023
Student	Date.
Approved by:	
A	
Leonard Rusli, Ph.D	28 July 2023
Thesis Advisor	Date.

Dr. Maulahikmah Galinium, S.Kom, M.Sc

Dean

Date.

Brandon Matthew Saerang

ABSTRACT

SCARA FOR FMS LAB EQUIPMENT

By

Brandon Matthew Saerang Leonard Rusli, Ph.D, Advisor

SWISS GERMAN UNIVERISTY

This research paper presents the development of a SCARA (Selective Compliance Assembly Robot Arm) robot specifically designed for pick and place operations in Swiss German University's FMS (Flexible Manufacturing System) lab equipment. The aim is to increase productivity and efficiency, which may then be utilized in current industrial sectors via automation. The paper provides an overview of the significance of SCARA robots in manufacturing automation and discusses the requirements and constraints associated with pick and place tasks. The research methodology involves a systematic design and development process, carefully selecting hardware designs and integrating a robust control system for precise positioning and path planning. Experimental tests validate the performance of the developed SCARA robot, demonstrating its high-speed capabilities and precise positioning. The results establish the effectiveness of the proposed design, highlighting its potential for transporting the cup from distribution station to a plate in the conveyor station. This research contributes to the advancement of SCARA robot design and development, with implications for improving operational efficiency in various manufacturing industries.

Keywords : SCARA Robot, Pick and Place, FMS, Automation, Manufacturing Automation

DEDICATION

This paper is dedicated to God who always show me a way throughout my journey, to my family who gives me support,

my friends who strive together along my side

and my beloved one who gives me encouragements.

Also, I would like to dedicate this work for the sake of technological knowledge yet to be pursued amidst this modern era.

ACKNOWLEDGEMENTS

First and foremost, I would like to raise my praise and thanks to God who gives me blessings throughout this project.

I would also like to thank Mr. Leonard Rusli, Mr. Y. Fredhi and Mr. Getrich Tanaka for their guidance and patience throughout this project. The knowledge I obtain from them has brought success into this project. In addition, I would like to thank all my lecturers for their guidance since my very first year in Swiss German University. As well as Swiss German University's staffs which could not be listed who have always helped me with administrative related problems.

Moreover, I would like to thank Elisabet Sudira, Hanzen Clementius, Sean Edison and all my friends from Swiss German University for your companionship throughout my university life, especially Christopher Evan Tan, Dylan Louis and Olivia Dharmadi who has always helped me not only guidance but also mental support. Not forget to mention my beloved one who gives me encouragement to finish this paper in order to graduate on time.

My deepest gratitude goes for my family for their unconditional love and unending support. They have always been on by my side to provide supports such as foods and facilities which was utilized throughout this project.

TABLE OF CONTENTS

STA	TEMENT BY THE AUTHOR2
ABS	STRACT
DEI	DICATION
ACI	KNOWLEDGEMENTS
TAE	BLE OF CONTENTS
LIS	Г OF FIGURES9
LIS	Г OF TABLES
CH	APTER 1 - INTRODUCTION
1.1.	Background
1.2.	Research Problems14
1.3.	Research Objectives
1.4.	Significance of Study14
1.5.	Research Question
1.6.	Hypothesis
CH	APTER 2 - LITERATURE REVIEW
2.1.	Industrial Automation in Manufacturing16
2.2.	SCARA Robtos and Its Role in Automation16
2.3.	Inverse Kinematics17
2.4.	Development, Integration, and Optimization of Automation Prototype
Mod	lules (MPS) for Mechatronics Lab18
2.5.	Remote Terminal (CRT-ID16 & CRT-OD16)19
2.6.	Arduino RFID Module19
2.7.	Arduino Serial Communication (RX-TX)
CH	APTER 3 – DESIGN AND METHODOLOGY
3.1.	SCARA Arm Platform
3.2.	SCARA Base Support
3.3.	SCARA Base Timing Gear
3.4.	SCARA Z-Axis Bottom Plate

Brandon Matthew Saerang

SCARA FOR FMS LAB EQUIPMENT

3.5.	SCA	RA Gripper		
3.6.	SCA	RA Robot's Electrical System		
3.7.	Add	itional Electrical Adjustments		
3.8.	SCA	RA Robot Main Program		
	3.8.1.	SCARA Main Program (Setup)		
	3.8.2.	SCARA Main Program (Initialization)41		
	3.8.3.	SCARA Main Program (Sequence)		
	3.8.4.	SCARA Main Program (Inverse Kinematics)43		
	3.8.5.	SCARA Main Program (Angle to Step)45		
	3.8.6.	SCARA Main Program (Grip)46		
	3.8.7.	SCARA Main Program (Loop)47		
3.9.	SCA	RA Program Set Point		
3.10.	Con	veyor Program		
CHA	PTER 4	-TESTING AND DISCUSSION OF RESULTS		
4.1.	Ove	rview of Prototype Performance		
4.2.	Test	ing and Experimental Methods		
4.3.	Test	Results		
4.4.	Disc	ussion of Results and Error Diagnoses		
CHA	PTER 5	- CONCLUSIONS AND RECOMENDATIONS		
5.1.	Con	clusions		
5.2.	Rec	ommendations for future work		
GLO	SSARY			
REFERENCES				
CUR	CURRICULUM VITAE61			

Figures

Page

LIST OF FIGURES

Figure 1. Simplified SCARA arm with angles and coordinates illustrated	17
Figure 2. Ardunio and RFID connection wiring diagram	20
Figure 3. A part of screenshotted Arduino code made by Robin2 in Example 5	21
Figure 4. Isometric view of the initial SCARA Robot design	23
Figure 5. Section view of the Z-Axis Mount Platform	24
Figure 6. Isometric view of the Z-Axis Mount Platform	24
Figure 7. Section view of the modified Z-axis mount platform	25
Figure 8. Isometric view of the modified Z-axis mount platform	25
Figure 9. The 3D printed base with the crack mentioned	25
Figure 10. Section view of the SCARA Robot base	26
Figure 11. Normal radial bearing contact angle	27
Figure 12. Angular contact bearing contact angle	27
Figure 13. Isometric view of the base design	27
Figure 14. Section view of the shaft and bearing alignment on the base	27
Figure 15. Simple technical drawing of the initial timing gear design	28
Figure 16. Simple technical drawing of the modified timing gear design	29
Figure 17. Isometric view of the initial design of Z-axis bottom plate	29
Figure 18. Top isometric view of the modified Z-axis bottom plate from	29
Figure 19. Bottom Isometric view of the modified Z-axis bottom plate	29
Figure 20. Final assembly of the SCARA robot's base	30
Figure 21. Isometric view of the initial design of SCARA gripper with its cover	
opened	30
Figure 22. Illustration of the said SCARA section before the gripper was removed	1 31
Figure 23. Illustration of the said platform for the pneumatic gripper to mount on	after
the gripper was removed	31
Figure 24. Isometric view of the pneumatic gripper housing	32
Figure 25. The gripper finger design integrated with the pneumatic gripper	32
Figure 26. Wiring connection of CNC shield, the four steppers and the limit switc	cnes
as well as the buck converter to supply $5V$ to the Arduino	33
Figure 27. Arduino UNU shield pin outs	34 25
Figure 28. wiring connection of the SCARA robot	33 1
Figure 29. Floating on the limit switch reading when it is connected with the term	nnai 25
Figure 30 Driver Stepper A 1088	33 36
Figure 31 Stepper driver mounted on a breadboard	30
Figure 32 Final electrical wiring for the SCARA robot	38
Figure 33 A screenshot of variables needs to be set up	30
Figure 34 Illustration of L1 and L2	39
Figure 35. Stepper signal in declaration	40
Figure 36. Screenshot of void setup	40
Figure 37. Screenshot of homing for the fourth stepper	41
Figure 38. Layout of the system arrangement	42

Brandon Matthew Saerang

SCARA FOR FMS LAB EQUIPMENT

Figure 39 Screenshotted part of sequence function	42
Figure 40. Illustration of SCAPA's arm in 2D	12
Figure 40. Infustration of SCARA's arm in 2D	43
Figure 41. Screenshot of the inverse kinematics calculation in Arduino	44
Figure 42. Mirrored projection of the SCARA arm	45
Figure 43. Screenshot of angle to step function	46
Figure 44. Screenshot of grip function	46
Figure 45. Screenshot of main loop	47
Figure 46. Screenshot of main loop from SCARA program set point	48
Figure 47. Screenshot of the modified parseData function	48
Figure 48. Picture of data transfer from laptop via serial monitor	49
Figure 49. Layout of the conveyor system arrangement	
Figure 50. Layout of half of the conveyor system closed up	
Figure 51, Screenshot of function block used in conveyor program	
Figure 52. Image of the cup placement result from the first method	
Figure 53. Image of the cup placement result from the second method	
Figure 54. Precision test result #1	54
Figure 55. Precision test result #4	55
Figure 56. Precision test result #3	55
Figure 57. Precision test result #2	55

Table

Page

LIST OF TABLES

Table 1. List of SCARA Robot's part names	23
Table 2. I/O list of the additional Arduino pins used	
Table 3. List of conveyor system's part names	
Table 4. SCARA's performance based on speed with different library	53

