GLOSSARY

Autonomous Mobile Robot (AMR): A mobile robot that can drive, navigate, localize, and map the surroundings itself with help of sensors only without any static guides.

Behavior Tree (BT): A behavior tree is a mathematical model of plan execution based in computer science, robotics, control systems and video games.

LiDAR: Abbreviation of Light Detection and Ranging. A sensing device that can measure distance with certain accuracy.

Navigation 2 (Nav2): A Package that is used for autonomous navigation, and obstacle avoidance.

Robot Operating System 2 (ROS2): Abbreviation of Robot Operating System 2. A set of software library and tools for building robot applications.

REFERENCES

Ademovic, A., n.d. An Introduction to Robot Operating System: The Ultimate Robot Application Framework. [Online]

Available at: <u>https://www.toptal.com/robotics/introduction-to-robot-operating-system</u> [Accessed 19 January 2023].

Alatise, M. B. & Hancke, G. P., 2020. A Review on Challenges of Autonomous Mobile Robot and Sensor Fusion Methods. *IEEE Access*, Volume 8, pp. 39830-39846.

Anon., n.d. *AGV vs. AMR - What's the Difference*?. [Online] Available at: <u>https://www.mobile-industrial-robots.com/insights/get-started-with-amrs/agv-vs-amr-whats-the-difference/</u> [Accessed 23 January 2023].

Anon., n.d. *micro-ROS*. [Online] Available at: <u>https://micro.ros.org/</u> [Accessed 12 January 2023].

Anon., n.d. *ROS - Robot Operating System*. [Online] Available at: <u>https://www.ros.org/</u> [Accessed 18 January 2023].

Colledanchise, M. & Natale, L., 2021. Handling Concurrency in Behavior Trees. *IEEE Transactions on Robotics*.

Colledanchise, M. & Ögren, P., 2017. How Behavior Trees Modularize Hybrid Control Systems and Generalize Sequential Behavior Compositions, the Subsumption Architecture and Decision Tree. *IEEE Transactions on robotics*, 33(2), pp. 372-389. Dortmans, E. & Punter, T., 2022. Behavior Trees for Smart Robots Practical Guidelines for Robot Software Development. *Journal of Robotics*, 7 September. Volume 2022.

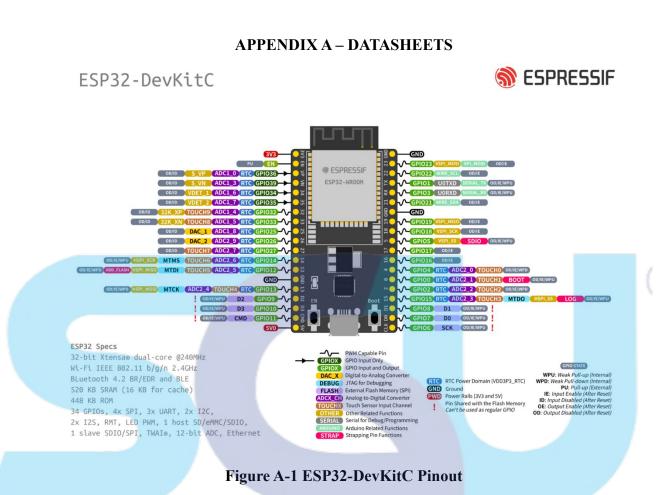
Ghzouli, R. et al., 2015. Behavior Trees and State Machines in Robotics Applications. *Journal of LATEX Class Files,* Volume 14.

Ichsan, M., 2022. *Mechanical Improvement on Autonomous Mobile Robot*. s.l.:Swiss German University.

Jonathan, M., 2022. Development of Indoor Logistic Autonomous Mobile Robot Based on Robot Operating System 2. s.l.:Swiss German University.

Millikan, R. A. & Bishop, E. S., 1917. *Elements of Electricity: A Practical Discussion* of the Fundamental Laws and Phenomena of Electricity and Their Practical Applications in the Business and Industrial World. Chicago: American Technical Society.

Quigley, M. et al., 2009. *ROS: an open-source Robot Operating System*. s.l.:s.n. Rovida, F., Grossmann, B. & Krüger, V., 2017. *Extended Behavior Trees for Quick Definition of Flexible Robotic Tasks*. Vancouver: Internaional Conference on Intelligent Robots and Systems.


Rubio, F., Valero, F. & Llopis-Albert, C., 2019. A review of mobile robots: Concepts, methods, theoretical framework, and applications. *International Journal of Advanced Robotic Systems*.

Tannaka, G. M., 2023. *Development of Indoor Logistic Autonomous Mobile Robot Using Behavior Tree in ROS2*. s.l.:Swiss German University. Witono, N. A., 2021. Development of Scaled-Down Self-Driving Car for Last Mile Delivery Based on ROS2. s.l.:Swiss German University.

Yao, F., Alkan, B., Ahmad, B. & Harrison, R., 2020. Improving Just-in-Time Delivery Perfromance of IoT-Enabled Flexible Manufacturing Systems with AGV Based Material Transportation. *Sensors*, 20(21).

Zghair, N. A. K. & Al-Araji, A. S., 2021. A one decade survey of autonomous mobile robot systems. *International Journal of Electrical and Computer Engineering (IJECE)*, 11(6), pp. 4891-4906.

3. DRIVER INTERFACE AND WIRING

3.1. INTERFACE DEFINITION

3.1.1 Power wire and power supply input port of left motor

Port	Pin	Mark	Name	Function
Θ	1	DC	Power supply	Power supply 24V-48V
0	2	GND	interface	
<u>0</u>	3	U	Motor power	Wire connected to motor
	4	v	interface	
. 5	5	w		

3.1.2 Power wire and power supply input port of right motor

Port	Pin	Mark	Name	Function
()	5	GND	Power supply	Power supply 24V-48V
	4	DC	interface	
	3	w	Motor power	Wire connected to motor
	2	v	interface	
	1	U		

3.1.3 Left/Right motor's incremental encoder and hall port J2/J6

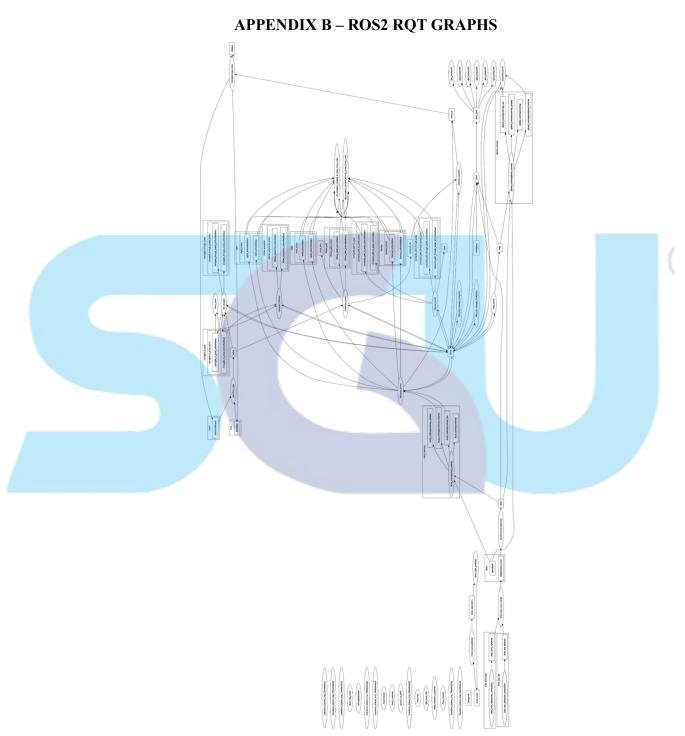
Port	Pin	Mark	Name	Function
	1	iA+		
2001	2	iA-		
4003	3	iB+	Encoder	
6 5	4	iB-		
100 0 9	5	RTC+	Temperature sensor	
120 011	6	RTC-		
,	7	v	Hall sensor	
	8	w		
	9	U		
	10	GND	Power ground	
	11	VCC	Power positive	Output to encoder and
				HALL
	12	GND	Power ground	

Figure A-2 ZLTECH 8015D Driver Ports 1

DEVELOPMENT OF A LOOPING BEHAVIOR TREE BASED INDOOR LOGISTIC AUTONOMOUS MOBILE ROBOT IN ROBOT OPERATING SYSTEM 2

3.1.4 Motor control signal port J3

Port	Pin	Mark	Name	Function
Θ	1	BGND-L	Left brake power-	Left brake control
	2	-BR-L	Left brake-	
0	3	BDC-L	Left brake power+/Left brake+	
$\overline{\bigcirc}$	4	BGND-R	Right brake power-	
0	5	-BR-R	Right brake-	Right brake control
<u></u>	6	BDC-R	Right brake power+/Right brake+	
0	7	OUTPUT1	Internal pull up 5V output	Could be configured via
	8	OUTPUT2		CAN or 485


3.1.5 Motor control signal port J4

2 BOUT-L Left motor encoder B output sign 3 AOUT-R Right motor encoder A Right motor encoder B 9 4 BOUT-R Right motor encoder B		
Image: Constraint of the state of	Left motor encoder	
Image: Constraint of the state of	nal	
	ncoder	
	nal	
Image: System 2 5 +5V Encoder +5V power supply External power Image: System 2	output	
6 GND Encoder +5V power supply -		
	ured via	
8 INPUT2 limited 5V input CAN or 48	35	

3.1.6 Communication port J5

Port	Pin	Mark	Name	Function
	1	CANH	CANOPEN	
	3	CANL	1	
	2	Α	RS485	
20 01	4	В		
6 5	5	CANH	CANOPEN	
8 7	7	CANL		
	6	Α	RS485	
	8	В]	

Figure A-3 ZLTECH 8015D Driver Ports 2

Hanzen Clementius Hartanto

DEVELOPMENT OF A LOOPING BEHAVIOR TREE BASED INDOOR LOGISTIC AUTONOMOUS MOBILE ROBOT IN ROBOT OPERATING SYSTEM 2

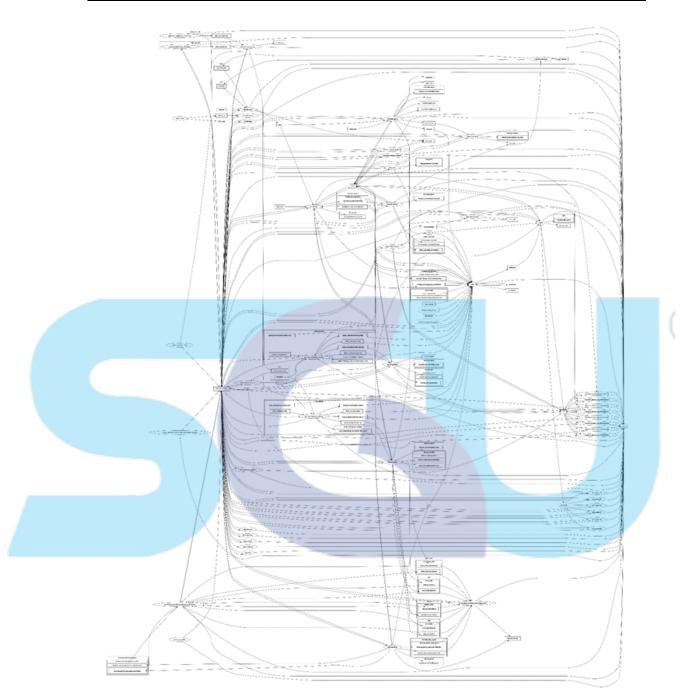


Figure B-2 Full RQT ROS2 Graph of the AMR

APPENDIX C – BILL OF MATERIALS

Table C-1 Bill of Materials

No.	Item	Quantity	Cost/Item	Total Cost
1	ESP32 DevKitC V4 WROOM-32D	1	Rp79,000.00	Rp79,000.00
2	Shield IO ESP32 DevkitC V4	1	Rp85,000.00	Rp85,000.00
3	Control Box Push Button 22mm 3 Hole	2	Rp19,000.00	Rp38,000.00
4	Push Button Fort 22mm XB7-EA NO	3	Rp7,280.00	Rp21,840.00
5	Push Button Fort 22mm XB7-EA NO	3	Rp7,280.00	Rp21,840.00
			Total	Rp245,680.00

CURRICULUM VITAE

HANZEN CLEMENTIUS HARTANTO

Undergraduate Student

DETAILS

ADDRESS Tangerang

Indonesia PHONE

+6282110149280

EMAIL hanzenclementius28@gmail.com

SKILLS

ROS2 C++

Python

LANGUAGES

Indonesian

English

German

HOBBIES

Custom Keyboard Building Guitar Violin Table Tennis

Mechanical Engineering with Mechatronics Concentration, Swiss German University Sep 2019 — Present

Basic Electrical Engineering and Electric Drive, Fachhochschule Südwestfalen Feb 2022

High School (Science), IPEKA Puri

Soest

Jakarta

Tangerang

INTERNSHIPS

EDUCATION

Intern, SMS group GmbH

Mar 2022 — Aug 2023

Assigned to the Comprehensive Service Products division. Created a database for customer and product management, helped reformat SMS TECademy teaching materials, and did hydraulic system simulations.

Intern, Swiss German University

Tangerang

Cikarang

Mönchengladbach

Helped with a project, with a concentration in ROS. Wrote a manual for the installation of Linorobot as well as the utilization of the follow_waypoints ROS package.

Trainee, Akademi Teknik Mesin Industri (ATMI)

Jul 2020 — Jan 2023

Sep 2020 — Nov 2023

Training in lathe machines, milling machines, bench work, welding, assembly, reverse engineering, electrical bench work, safety techniques, and PCB design in 2 months over the course of 2020-2023.