
BINARY EFFECT OF TERTIARY BUTYLHYDROQUINONE AND BUTYLATED HYDROXYTOLUENE ADDITIVES WITH THE ADDITION OF GLYCEROL MONOSTEARATE TO IMPROVE OXIDATIVE STABILITY OF PALM OIL-BASED BIODIESEL

By

Chelselyn Charissa Chuaca 11918001

SWISS GERMAN UNIVERSITY The Prominence Tower Jalan Jalur Sutera Barat No. 15, Alam Sutera Tangerang, Banten 15143 - Indonesia

Revised after the Thesis Defense on 18 July 2023

STATEMENT BY THE AUTHOR

I hereby declare that this submission is my work and to the best of my knowledge, it contains no material previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma at any educational institution, except where due acknowledgment is made in the thesis.

Gull Chelselyn Charissa Chuaca	(
Student	25 July 2023 Date
Approved by:	
Silvya Yusri M.Si Thesis Advisor	25 July 2023 Date
Dr. Hery Sutanto M.Si	
Thesis Co-Advisor	Date
Dr. Hery Sutanto M.Si	
Dean of Life Sciences Technology	Date 2023

ABSTRACT

BINARY EFFECT OF TERTIARY BUTYLHYDROQUINONE AND BUTYLATED HYDROXYTOLUENE ADDITIVES WITH THE ADDITION OF GLYCEROL MONOSTEARATE TO IMPROVE OXIDATIVE STABILITY OF PALM OIL-BASED BIODIESEL

By

Chelselyn Charissa Chuaca Silvya Yusri M.Si, Advisor Dr. Hery Sutanto M.Si, Co-Advisor

SWISS GERMAN UNIVERSITY

Biodiesel is a renewable and environmentally friendly alternative to conventional diesel fuel. However, like any fuel, biodiesel is subject to oxidation, which can negatively impact its quality and performance when kept for long-term. The addition of binary antioxidants such as TBHQ:BHT had been proven to improve oxidation stability of biodiesel. Combining surfactant such as GMS into single antioxidant had been proven to solve its insolubility issue. However, the implementation of mixing binary antioxidants and surfactant has not been done yet. Therefore, this research analyzed the effect of single antioxidant, binary antioxidants, and binary antioxidants with GMS (100 ppm) addition into biodiesel and biodiesel blend B35. The effect was observed within 8 weeks storage period. The result showed that B35 did not have any significant impact. While in pure biodiesel samples, B100-bi and B100-bi+GMS had a slight difference in the results of oxidative parameters. B100-bi showed the best result in induction period and kinematic viscosity. Rancimat test showed 170 hours for B100-bi and 168 hours for B100-bi+GMS. While B100-bi+GMS indicated as the best additives in term of acid number, iodine value, and dispersion test. For that reason, the addition of surfactant into binary antioxidants showed similar performance with B100-bi but with slightly better solubility.

Keywords: Antioxidant, Binary effect, Biodiesel, Oxidative stability, Surfactant

DEDICATION

I dedicate this study to support the development of science in Indonesia. Also, to Swiss German University which provides valuable knowledge. Lastly, to my beloved parents and friends for their endless love and support.

ACKNOWLEDGEMENTS

With the humblest heart, I would like to express my sincere appreciation and thankfulness for those who has helped and support me during my study.

First and foremost, I want to thank God for providing me the strength, peace, and courage to complete my thesis.

I want to share my gratitude to my advisor Silvya Yusri, M. Si. for her kind assistance, patience, and valuable knowledge that makes me able to do this research. Thank you for your availability to help me by giving wise direction.

Also, I would like to thank my co-advisor Dr. Hery Sutanto M.Si. for providing me the opportunity to do this topic. Furthermore, for sharing your deep knowledge and keen advice.

Moreover, I am grateful to Dr. -Ing Evita H. Legowo for providing me a more than enough reliable biodiesel samples so that I can research properly with the given samples.

As well to SGU's lab assistants, especially Kak Rizal who helped me so much on how to deal with my analysis.

To Chemical Engineering 2019 for being warm and supportive friends all along. Thanks to your companion all along, I was able to get through this college period well.

Last but not least, to my parents and friends for giving me never-ending support.

TABLE OF CONTENTS

Page

STATEMENT BY THE AUTHOR	.2		
ABSTRACT			
DEDICATION	.5		
ACKNOWLEDGEMENTS	.6		
TABLE OF CONTENTS	.7		
LIST OF FIGURES	.9		
LIST OF TABLES	10		
CHAPTER 1 - INTRODUCTION	11		
1.1 Background	11		
1.2 Research Problems			
1.3 Objectives	14		
1.4 Hypothesis	14		
CHAPTER 2 - LITERATURE REVIEW	15		
2.1 Oxidative stability of biodiesel standard	15		
2.2 Effect of Long-Term Storage on the Quality of Palm Oil Biodiesel	17		
2.3 Oxidation mechanism	19		
2.4 Antioxidant mechanism	19		
2.5 Antioxidant addition to biodiesel	20		
2.6 Synergistic effect from binary antioxidants	21		
2.7 Surfactant addition to solve insolubility	23		
CHAPTER 3 - RESEARCH METHODS	25		
3.1 Materials and Equipment	25		
3.2 Design of Experiment	25		
3.3 Experimental Procedure	27		
CHAPTER 4 – RESULTS AND DISCUSSIONS	30		
4.1 Effect of various additive addition to acid number during storage	30		
4.2 Effect of various additive addition to iodine value during storage	36		
4.3 Effect of various additive addition to kinetic viscosity at 40 °C during storage	42		
4.4 Effect of various additive addition to induction period during storage	43		
4.5 Dispersion Test	44		
CHAPTER 5 – CONCLUSIONS AND RECOMMENDATIONS	47		
5.1 Conclusions	47		

BINARY EFFECT OF TBHQ AND BHT ADDITIVES WITH THE ADDITION OF GMS TO IMPROVE OXIDATIVE STABILITY OF PALM OIL BASED BIODIESEL	Page 8 of 67
5.2 Recommendations	47
GLOSSARY	
REFERENCES	
APPENDIX	54
CURRICULUM VITAE	

LIST OF FIGURES

Figure 2.1 a) kinematic viscosity at 40 °C b) acid number and c) density at 40 °C d)				
total glycerol e) Peroxide number and f) FAMEs content of POB and COB during 18				
weeks of storage19				
Figure 3.1 Design of experiment				
Figure 3.2 B100 and B35 samples27				
Figure 4.1 oleic acid, linoleic acid, and palmitic acid chemical structure				
Figure 4.2 The oxidative degradation of linoleic acid leads to the creation of				
hydroperoxides				
Figure 4.3 Acid number of pure biodiesel for 8 weeks				
Figure 4.4 Acid number slope difference of pure biodiesel with four different kinds of				
additive(s)				
Figure 4.5 Acid number of pure biodiesel and biodiesel with binary antioxidants and				
surfactant for 8 weeks				
Figure 4.6 Biodiesel B35 acid number for 8 weeks				
Figure 4.7 Chemical structure of petroleum diesel and biodiesel				
Figure 4.8 Acid number slope difference of biodiesel B35 with four different kinds of				
additive(s)				
Figure 4.9 Biodiesel B35 with additive(s) acid number trend for 8 weeks				
Figure 4.10 Pure biodiesel iodine value for 8 weeks				
Figure 4.11 Iodine value slope difference of pure biodiesel with four different kinds of				
additive(s)				
Figure 4.12 Iodine value of pure biodiesel and biodiesel with binary antioxidants and				
surfactant for 8 weeks				
Figure 4.13 Biodiesel B35 iodine value for 8 weeks				
Figure 4.14 Iodine value slope difference of biodiesel B35 with four different kinds of				
additive(s)40				
Figure 4.15 Iodine value of biodiesel B35 and biodiesel B35 with binary antioxidants				
and surfactant for 8 weeks41				
Figure 4.16 Kinematic viscosity at 40 °C during 8 weeks storage				
Figure 4.17 Kinematic viscosity at 40 °C difference				

Figure 4.18 Induction period in hours of pure biodiesel with none, binary	
antioxidants, and binary antioxidants & GMS	44

LIST OF TABLES

Table 2.1 The American Standard ASTM D6751 (Sakthivel et al., 2018)	15
Table 2.2 The European Standard EN 14214 (Sakthivel et al., 2018)	16
Table 2.3 The Indonesian Standard SNI 7182 (Layanan BBN, n.d.)	16
Table 2.4 Induction period of palm oil-based biodiesel, biodiesel with single an	d
binary antioxidants at 500 ppm	22
Table 4.1 The average of absorbance of each sample at 290nm and 278nm wav	elength
in the initial week	45
Table 4.2 Delta absorbance of B100 at 290nm wavelength between four weeks	46
Table 4.3 Delta absorbance at 278 nm wavelength between four weeks	46