STUDY OF STORAGE CONDITION OF OIL PALM FROND JUICE FOR BIOETHANOL PRODUCTION

By

Kezia Valentina Yusuf 11918002

BACHELOR'S DEGREE in

SUSTAINABLE ENERGY & ENVIRONMENT LIFE SCIENCES & TECHNOLOGY

SWISS GERMAN UNIVERSITY
The Prominence Tower
Jalan Jalur Sutera Barat No. 15, Alam Sutera
Tangerang, Banten 15143 - Indonesia

Revision after the Thesis Defense on 18 July 2023

STATEMENT BY THE AUTHOR

I hereby declare that this submission is my own work and to the best of my knowledge, it contains no material previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma at any educational institution, except where due acknowledgement is made in the thesis.

Kezia Valentina Yusuf	27.07.2023
Student	Date
Approved by:	
Mmynym	
DrIng. Evita H. Legowo	27.07.2023
Thesis Advisor	Date
DrIng Drah Indriani Widiputri, ST., MSc	19.06.2023
Thesis Co-Advisor	Date
Dr. Hery Sutanto, S.Si., M.Si.	
Dean	Date

ABSTRACT

STUDY OF STORAGE CONDITION OF OIL PALM FROND JUICE FOR BIOETHANOL PRODUCTION

By

Kezia Valentina Yusuf Dr.-Ing. Evita H. Legowo, Advisor Dr.-Ing Diah Indriani Widiputri, S.T., M.Sc, Co-Advisor

SWISS GERMAN UNIVERSITY

OPF Juice has become a promising feedstock for bioethanol. However, a substantial challenge of working with OPF Juice is the quick deterioration of sugar during storage. Hence, this study focused on the optimum bioethanol storage and fermentation of OPF Juice. The OPF juice was obtained by pressing it on a sugarcane press machine. Two methodologies, rotary evaporator and dehydrator, was used for removing 50% of the water content of the juice. The juice was stored in 30 °C, 40 °C, and 50 °C for 20 days to observe the sugar deterioration. The samples with least degradation was fermented to produce bioethanol. The result showed that 30 °C samples experienced 88% sugar loss, 40 °C samples experienced 84% sugar loss, and 50 °C samples experienced 0% sugar loss. Both method of water removal had insignificant effect on sugar degradation. However, the dehydrator samples yielded slightly better sugar preservation than rotary evaporator. The moisture content had insignificant effect for sugar preservation. However, the dehydrated samples were more concentrated, making it required less volume space in storage. The fermentation process yielded an unsatisfactory result of ethanol content, due to the insufficiency sugar content for the yeast in the ethanolproducing phase.

Keywords: Oil Palm Frond Juice, Bioethanol Fermentation, Storage, Fermentation, Saccharomyces Cerevisiae.

DEDICATION

I dedicate this work to the future of science in Indonesia to SGU and beloved lecturers for the education and knowledge, as well for my family, friends and everyone that supported me in the making of this thesis work. Thank you!

ACKNOWLEDGEMENTS

First and foremost I would like to thank God for His guidance and the strength that He had given me, so I could finish my thesis work.

I would like to also express my gratitude to my advisor, Dr.-Ing Evita H. Legowo, for giving me the opportunity to do this research, and also guiding me every step of the way. Her sincerity, guidance, and motivation that she gave to me really encouraged me to finish this work. The knowledge and experience that she taught me is really precious.

Another sincere thanks to Dr.-Ing Diah Indriani Widiputri, S.T., M.Sc, for being my coadvisor. For all the suggestions and assistance that she gave me, that improved the content of this thesis work.

Also to my beloved university, Swiss German University, and to all of the lecturers of LST. Thank you for all of the education and good times that I experienced here. Special thanks to all of the lab assistants who helped me during my laboratory period.

Thank you for Chemical Engineering 2019 for all the friendship and togetherness we had. I really cherish all the good times and even the bad times that we went through together as a team. They made my days in university really beautiful and unforgettable.

Lastly, a warmest gratitude to my parents, family, friends, and everyone that was involved in the making of this thesis. Thank you for your never-ending support.

TABLE OF CONTENTS

	Page
STATEMENT BY THE AUTHOR	2
ABSTRACT	3
DEDICATION	5
ACKNOWLEDGEMENTS	6
TABLE OF CONTENTS	7
LIST OF FIGURES	10
LIST OF TABLES	11
CHAPTER 1- INTRODUCTION	12
1.1 Background	12
1.2 Research Problems	14
1.3 Research Objectives	
1.4 Significance of Study	15
1.5 Research Questions	
1.6 Hypothesis	15
CHAPTER 2- LITERATURE REVIEW	16
2.1 Indonesia's Current Energy Condition	16
2.1.1 Bioethanol as an Energy Source in Indonesia.	18
2.2 Bioethanol	
2.3 Palm Oil in Indonesia	20
2.3.1 Palm Oil Waste	21
2.4 Oil Palm Frond for Bioethanol Production	22
2.4.1 OPF Juice Storage	23
2.5 Bioethanol Production Process	24
2.5.1 Pre-treatment	25
2.5.2 Hydrolysis and Fermentation	26
2.6 Factors Affecting Bioethanol Production	27
2.6.1 Microorganism: Saccharomyces Cerevisiae	27
2.6.2 pH	28
2.6.3 Temperature	28
2.6.4 Fermentation Time	29
2.6.5 Oxygen Supply	29
CHAPTER 3- RESEARCH METHODS	31

3.1	Venue and Time	31
3.2	Materials and Equipment	31
	3.2.1 Materials	
	3.2.2 Equipment	31
3.3	Design of Experiment	
3.4	Experimental Procedure	34
	3.4.1 Oil Palm Frond Collection	34
	3.4.2 Juice Extraction and Water Content Removal	34
	3.4.3 Storage	35
	3.4.4 Inoculum Preparation	35
	3.4.5 Fermentation	36
3.5	Analytical Procedure	36
	3.5.1 Reducing Sugar Content Analysis (Spectrometry)	36
	3.5.2 Ethanol Content Analysis	38
CHA	PTER 4- RESULTS AND DISCUSSIONS	39
4.1	Results	39
	4.1.1 Water Content Removal	39
	4.1.2 Storage	
	4.1.2.1 Observation of Storage at 30 °C	42
	4.1.2.1.1 Visual Observation of 30 °C	42
	4.1.2.1.2 Reducing Sugar Content Measurement of 30 °C	43
	4.1.2.1.3 pH Measurement of 30 °C	45
	4.1.2.2 Storage at 50 °C (Climate Chamber)	46
	4.1.2.2.1 Visual Observation of 50 °C	46
	4.1.2.2.2 Reducing Sugar Content Measurement of 50 °C	48
	4.1.2.2.3 pH Measurement of 50 °C	49
	4.1.2.3 Storage at 40 °C (Climate Chamber)	51
	4.1.2.3.1 Visual Observation of 40 °C	51
	4.1.2.3.2 Reducing Sugar Content Measurement of 40 °C	52
	4.1.2.3.3 pH Measurement of 40 °C	54
	4.1.2.4 Result Comparison	56
	4.1.2.5 Effect of Microorganism Activity on Sugar Degradation	58
	4.1.3 Fermentation Result	58
4.2	Discussion	64

	4.2.1	Storage	64
	4.2.2	Fermentation	66
CHA	APTER 5	5- CONCLUSIONS AND RECOMMENDATIONS	67
5.1	Conclu	isions	67
5.2	Recom	mendations	68
REF	ERENC	ES	69
APP	ENDIX		75
CUF	RRICUL	UM VITAE	92

LIST OF FIGURES

Figure 2.1 Total Final Consumption (TFC) by sector (<i>Indonesia - Countries & Regions - IEA</i> , 2022)	16
Figure 2.2 Total energy supply (TES) by source (<i>Indonesia - Countries & Regio IEA</i> , 2022)	
Figure 2.3 Fermentation Equation	20
Figure 2.4 Waste from Palm Oil Processing	21
Figure 2.5. Oil Palm Frond Parts	22
Figure 3.1 Design of Experiment	33
Figure 3.2 Oil Palm Fronds & Palm Oil Tree	34
Figure 3.3 Oil Palm Frond Juice (OPFJ)	34
Figure 3.4 Sample's vessel and fermentation setup	36
Figure 4.1 Juice Colour of the Samples of: (a) Food Dehydrator; (b) Rotary Evaporator	41
Figure 4.2 Arrangement of OPF Juice Storage of: (a) Control; (b) Food Dehydra (c) Rotary Evaporator	
Figure 4.3 Precipitation of the Sample of the Control Sample	
Figure 4.4 Reducing Sugar Measurement of 30 °C	44
Figure 4.5 pH Measurement of the 30 °C Samples	
Figure 4.6 Storage 50 °C - day 0 & day 1	47
Figure 4.7 Fungi Growth in Control-2 Sample of 50 °C in day 12 & 16	47
Figure 4.8 Reducing Sugar Measurement at 50 °C	48
Figure 4.9 pH Measurement of the 50 °C Samples	
Figure 4.10 Fungi on day 6 of the 40°C samples	52
Figure 4.11 Fungi on day 12 of the 40°C samples	52
Figure 4.12 Reducing Sugar Measurement of 40 °C	53
Figure 4.13 pH Measurement of the 40 °C Samples	55
Figure 4.14 Storage Result Comparison	56
Figure 4.15 Chemical Reaction of Fermentation	63

LIST OF TABLES

Table 2.1 Bioethanol Production Plant in Indonesia	18
Table 3.1. Glucose Concentration	37
Table 4.1 Dehydration Time of Rotary Evaporator and Dehydrator	40
Table 4.2 Observation of 30 °C Samples	42
Table 4.3 Reducing Sugar Concentration of 30 °C	43
Table 4.4 Sugar Degradation Percentage of 30 °C	44
Table 4.5 pH Measurement of 30 °C	45
Table 4.6 Visible Changes in 50 °C Samples	46
Table 4.7 Reducing Sugar Concentration of 50 °C	48
Table 4.8 Sugar Degradation Percentage of 50 °C	49
Table 4.9 pH Measurement of 50 °C	50
Table 4.10 Visible Changes in 40 °C Samples	51
Table 4.11 Reducing Sugar Concentration of 40 °C	53
Table 4.12 Sugar Degradation Percentage of 40 °C	54
Table 4.13 pH Measurement of 40 °C	55
Table 4.14 Overall Sugar Loss	57
Table 4.15 Initial Sugar Concentration of Each Temperature	57
Table 4.16 Reducing Sugar Measurement & pH of Sterilized and Non-Sterilized	
Samples	
Table 4.17 Ethanol Content of the Samples	59
Table 4.18 Density of Sample's Content	60
Table 4.19 Mass of the Sample of Batch 1	61
Table 4.20 Mass of the Sample of Batch 2	61
Table 4.21 Reducing Sugar Concentration and Ethanol Mass Percentage in OPF I	
Table 4.22 Theoretical Ethanol Potential of the Samples	63