DEVELOPMENT OF PLC-BASED FUNCTIONS FOR COMMUNICATION BETWEEN REAL-TIME DATABASE AND SMART GRID INVERTER

By

Edwin Sebastian 1 130 1014

BACHELOR'S DEGREE

in

MECHANICAL ENGINEERING – MECHATRONICS CONCENTRATION FACULTY OF ENGINEERING AND INFORMATION TECHNOLOGY

SWISS GERMAN UNIVERSITY

The Prominence Tower Jalan Jalur Sutera Barat No. 15, Alam Sutera Tangerang, Banten 15143 - Indonesia

August 2017

Revision After The Thesis Defense on [28 July 2017]

STATEMENT BY THE AUTHOR

I hereby declare that this submission is my own work and to the best of my knowledge, it contains no material previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma at any educational institution, except where due acknowledgment is made in the thesis

	Edwin Sebastian	
	Student	Date
	Approved by:	
1/4/	Prof. DrIng. Egon Ortjohann	DOITY
	Thesis Advisor	Date
	Benny Widjaja, M.T.	
	Thesis Co-Advisor	Date
	Dr. Ir. Gembong Baskoro, M.Sc.	

ABSTRACT

DEVELOPMENT OF PLC-BASED FUNCTIONS FOR COMMUNICATION BETWEEN REAL-TIME DATABASE AND SMART GRID INVERTER

By

Edwin Sebastian
Prof. Dr.-Ing. Egon Ortjohann, Advisor
Benny Widjaja, M.T., Co-Advisor

SWISS GERMAN UNIVERSITY

The smart grid is a developed technology that will replace the traditional power gridwith two-ways flows of information and power transmission as the main benefit of the smart grid. With the massive flows of data, smart grid needs a database system as one of the data management infrastructures. The aim of this thesis is to establish a two-ways communication between the programmable logic controller and the real-time database and visualise all the data in the database. Using the TCP connection and HTTP application between the PLC and the database, the two-ways communication can be implemented to the database system.

Keywords: Smart Grid, Programmable Logic Controller, Data Management, Real-Time Database, TwinCAT, InfluxDB, Chronograf © Writing Copyright 2017 by Edwin Sebastian

All rights owned by the South Westphalia University of Applied Science,
Institute for Electrical Power Systems,
under the law of research projects from the
"Ministry of Education and Research",
Federal Republic of Germany

SWISS GERMAN UNIVERSITY

DEDICATION

I dedicate this work to my one and only God, Jesus Christ, my family, my advisor, my co-advisor, my supervisor, all of my lecturers, and all of my friends.

ACKNOWLEDGEMENTS

First of all, I wish to express my gratitude to Prof. Dr.-Ing. Egon Ortjohann,for the opportunity and knowledge that I got during the process of thesis work, and my coworkers at Power Systems and Power Economics Laboratory in the South Westphalia University of Applied Science for their support and help.

I also would like to thank Dipl.-Ing. Andreas Schmelterfor the insight and experience that helps me to finish the thesis work and also a great help for me since the beginning of the thesis work including the documentation.

I am grateful to Benny Widjaja, M.T., who gave me support and advice concerning the thesis writing and to all of the lecturers of Mechatronics Engineering for the knowledge they have shared during my study at Swiss German University.

I thank all of myfamily to each one of them who always supports and motivates me, especially my both parents who always pray and wish for the best of all my endeavour and my big brother and sister who has been a moral support throughout this process, for their guidance and encouragement.

I thank my friends, Paksi Mega Bumi, Patrick Kahardipraja, and Raymond Hartonowho work with the same advisor and always give me support and advice and be a good example for me to adapt while working in the laboratory.

And last but not least to my Mechatronics Engineering 2013 classmates for the last fouryears, especially my friends Albert Wirawhardana, Andrina Herawati, Brian Wijaya, Fabrilian Handoko, Kristophorus Peter, Muhammad Hanif, Michael Kevin and Hansen Chitrahadi whom I shared the unexpected journey in Germany.

TABLE OF CONTENTS

	Page
STATEMENT BY THE AUTHOR	2
ABSTRACT	3
DEDICATION	5
ACKNOWLEDGEMENTS	6
TABLE OF CONTENTS	7
LIST OF FIGURES	10
LIST OF TABLES	13
CHAPTER 1 Introduction	14
1.1 Background	14
1.2 Problem Identification	15
1.3 Objectives	15
1.4 Hypothesis	15
1.5 Thesis Scope and Limitation	16
1.6 Significance of Study	
CHAPTER 2 Literature Review	17
2.1 Smart Grid	
2.2 Clustering Power System Approach	
2.2.1 Data Management Infrastructure	18
2.3 Programmable Logic Controller	20
2.3.1 IEC 61131-3	21
2.4 TwinCAT (Beckhoff)	24
2.4.1 TwinCAT TF6310 (TC3 TCP/IP Server)	24
2.5 Time-series Database	28
2.5.1 InfluxDB	29

2.6 Data Visualisation and Monitoring	34
2.6.1 Chronograf	35
2.6.2 Grafana	37
2.7 Transmission Control Protocol (TCP)	39
2.7.1 Establishing a TCP connection	39
2.7.2 Transmission Control Protocol Headers	40
2.8 Hypertext transfer protocol (HTTP)	41
2.8.1 HTTP request and HTTP response	42
2.9 Network Analysis	43
2.9.1 Wireshark	44
CHAPTER 3 Research Method	
3.1 Introduction	45
3.2 Analysis of the Component	45
3.2.1 Database	46
3.2.2 Visualisation Tool	
3.3 Designing The Main Structure	49
3.4 Development of the PLC function	50
3.5 Implementation and Adaptation of the program	51
3.5.1 Writing Data to InfluxDB	53
3.5.2 Querying Data from InfluxDB	55
3.5.3 Visualisation Data using Chronograf	58
CHAPTER 4 Result and Discussion	60
4.1 Program Overview	60
4.1.1 Main Program	60
4.1.2 Function Block for storing data	62

4.1.3 Function Block for reading data64
4.2 Implementation of Real-Time Programmable Logic Controller Platform66
4.2.1 TwinCAT
4.2.2 InfluxDB
4.3 Visualisation in Chronograf
CHAPTER 5 Conclusion and Recommendation
5.2 Recommendation for Future Works
GLOSSARY
APPENDICES85
APPENDIX A – ERROR CODES
A1. Global Error Codes
A2. Router Error Codes
A4. RTime Error Codes
A6. Internal error codes of the TwinCAT TCP/IP Connection Server89
APPENDIX B – STATUS CODE90
B1. HTTP status code90
CURRICULUM VITAE 92