INCREASING PRODUCTIVITY OF MEDIUM VOLTAGE CABLE BY IMPROVING OVERALL EQUIPMENT EFFECTIVENESS (OEE) IN PT. XYZ

By

Farhan Prianggara 11507021

BACHELOR'S DEGREE in

INDUSTRIAL ENGINEERING FACULTY OF ENGINEERING AND INFORMATION TECHNOLOGY

SWISS GERMAN UNIVERSITY
The Prominence Tower
Jalan Jalur Sutera Barat No. 15, Alam Sutera
Tangerang, Banten 15143 - Indonesia

July 2019

Revision after the Thesis Defense on [July 9, 2019]

STATEMENT BY THE AUTHOR

I hereby declare that this submission is my own work and to the best of my knowledge, it contains no material previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma at any educational institution, except where due acknowledgement is made in the thesis. Farhan Prianggara Student Date Approved by: Dr. Eng. Aditya T. Pratama, M.T. Thesis Advisor Date Ir. Triarti Saraswati, M.Eng Thesis Co-Advisor Date Dr. Maulahikmah Galinium, S.Kom, M.Sc. Dean of Faculty of Engineering & IT Date

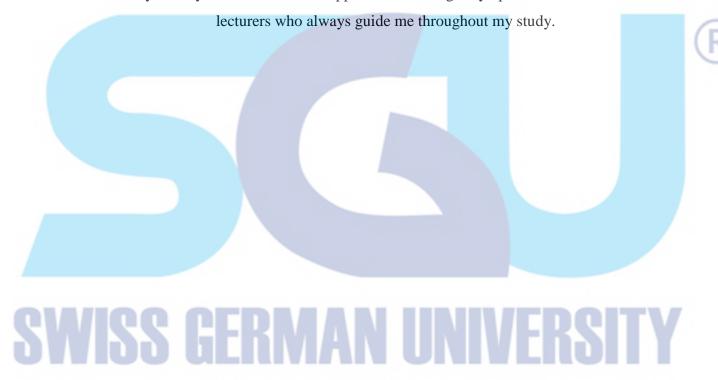
ABSTRACT

INCREASING PRODUCTIVITY OF MEDIUM VOLTAGE CABLE BY IMPROVING EQUIPMENT EFFECTIVENESS (OEE) IN PT. XYZ

By

Farhan Prianggara
Dr. Eng. Aditya T. Pratama, M.T. Advisor
Ir. Triarti Saraswati, M.Eng, Co-Advisor

SWISS GERMAN UNIVERSITY


This research is based on the case study in production process at PT. XYZ. The objective of this thesis is to increase output from 6.000 meters to 10.000 meters. Based on data analysis, the problem has found in the setup time that makes the assembly process inefficient and the number of machines to produce more. There are 2 steps of improvements proposed in this thesis, the first step is using Single Minutes Exchange of Die as a method, and the purpose of this method is to reduce the setup time. Another methodology that support this problem in this thesis is using Overall Equipment Effectiveness as a method for analyzing the performance on machine to get know which machine has a problem. In the end, the initial and after improved condition will be compared by Tecnomatix Plant Simulation software. Based on the final simulation results, the company is able to increase their product output from 5.753 meters to 9.960 meters.

Keywords: Single Minutes Exchange of Die, Time Study, Overall Equipment Effectiveness, Tecnomatix Plant Simulation, Fishbone Diagram (use scientific terms).

DEDICATION

I dedicate this thesis works to my perfect family who always support me to finish my study. To my friends who have supported me through my ups and downs and to the

ACKNOWLEDGEMENTS

First of all, the author would like to express my biggest gratitude to Allah SWT for his blessing and mercy that make me can accomplish this thesis. Without his mercy, the author will never be able to finish this thesis.

I would also like to thank my beloved family with compassion and patience to raise and educate me to be able to pursue a decent education and always support me to finish this thesis.

The author owes the deepest gratitude to Dr. Eng. Aditya T. Pratama, M.T. and Ir. Triarti Saraswati, M.Eng, as advisor and co-advisor who always provide encouragement, motivation, and mentoring so the author can finish this thesis.

The author would like to thank PT. XYZ who has been willing to accept me to complete this research. I would also like to thank my supervisor and co-workers who have given me the information and data concerned with my research to complete this project.

Last but not least, thanks to all my friends who would take his time for 4 years with me, for all the memories and motivational support that was done together.

TABLE OF CONTENTS

			Page			
STA	TEMEN	T BY THE AUTHOR	2			
ABS	TRACT		3			
DED	OICATIO	ON	5			
ACK	NOWL	EDGEMENTS	6			
TAB	TABLE OF CONTENTS					
LIST	OF FIC	GURES	10			
LIST	OF TA	BLES	11			
CHA	APTER 1	- INTRODUCTION	13			
1.1	Backgr	ound	13			
1.2	Researc	ch Problems	14			
1.3	Researc	ch Objectives	14			
1.4	Signific	cance of Study	15			
1.5	Researc	ch Scope and Limitation	15			
1.6	Thesis	Structure	15			
1.7	Thesis	Timeline	16			
CHA	CHAPTER 2 – LITERATURE REVIEW18					
2.1	Overall	l Equipment Effectiveness	18			
	2.1.1	Theory	18			
	2.1.2	Overall Equipment Effectiveness Calculation	19			
2.2	SMED		22			
2.3	Machin	ne Efficiency	22			
2.4	Modell	ing and Simulation	22			
	2.4.1	System	23			
	2.4.2	Model	23			
	2.4.3	Simulation Run	23			
	2.4.4	Tecnomatix Plant Simulation	23			
	2.4.5	Procedure of Simulation	23			
2.5	Lean Manufacturing					

	2.5.1 7 Quality Control Tools	24			
	2.5.2 DMAIC	26			
	2.5.3 Time Study	27			
CHA	CHAPTER 3 – RESEARCH METHODS				
3.1	Problem Identification				
3.2	Literature Review				
3.3	Research Design				
3.4	Data Collection				
3.5	Data Processing				
3.6	Data Analysis	30			
	3.6.1 Overall Equipment Effectiveness	31			
	3.6.2 Modelling and Simulation (Current Condition)	31			
	3.6.3 Fishbone Diagram	31			
3.7	Proposed Improvement	32			
3.8	Modelling and Simulation (After Improvement)	32			
3.9	9 Concluding Remark				
CHA	APTER 4 – RESULTS AND DISCUSSIONS	34			
4.1	Company Overview	34			
4.2	Product Overview				
4.3	Medium Voltage Cable Production Process	36			
4.4	Problem Identification				
4.5	Production Output	41			
4.6	Data Processing	42			
	4.6.1 Availability Ratio Measurement	43			
	4.6.2 Performance Ratio Measurement	45			
	4.6.3 Quality Performance Rate	47			
	4.6.4 Overall Equipment Effectiveness Calculation Measurement	49			
4.7	Overall Equipment Effectiveness Measurement Analysis	52			
	4.7.1 Availability Ratio Analysis	53			
	4.7.2 Fishbone Diagrams in Insulation machines	55			
	4.7.3 Fishbone Diagrams of Screening TP – 2 machine	56			
	4.7.4 Fishbone Diagrams of Screening TP – 5 & TP - 6 machine	57			
4.8	Proposed Improvement				

	4.8.1	Set-up activities before implement of SMED Method	59		
	4.8.2	Set-up activities after implement of SMED Method	64		
4.9	Overall	Equipment Effectiveness Result after Improvement	69		
	4.9.1	Material Balance of Production Output for 10 Km	70		
4.10	Mod	elling and Simulation	72		
	4.10.1	Existing Simulation	72		
	4.10.2	Proposed Improvement with Single Minutes Exchange of Die	73		
	4.10.3	Proposed Improvement by Purchasing Machines	74		
4.11	Cont	rol	75		
GLOSSARY					
REFERENCES					
APPENDIX A – CYCLE TIME					
APPENDIX B – MACHINE MAINTENANCE					
APPENDIX C – OEE CALCULATION					
APPENDIX D – SOP OF INSULATION					
APPENDIX E – SOP OF SCREENING					
APPENDIX F – SOP FLOW CHART (INSULATION)97					
APPENDIX G – SOP FLOW CHART (SCREENING)					
CURRICULUM VITAE					

SWISS GERMAN UNIVERSITY