OPTIMIZATION ANALYSIS OF PNEUMATIC SYSTEM IN AUTOMATIC FILLING MACHINE

By

Sylvia Hadiani Wijayanti 2-1752-025

MASTER'S DEGREE in

MECHANICAL ENGINERING – MECHATRONICS CONCENTRATION FACULTY OF ENGINEERING AND INFORMATION TECHNOLOGY

SWISS GERMAN UNIVERSITY The Prominence Tower Jalan Jalur Sutera Barat No. 15, Alam Sutera

Tangerang, Banten 15143 - Indonesia

August 2018

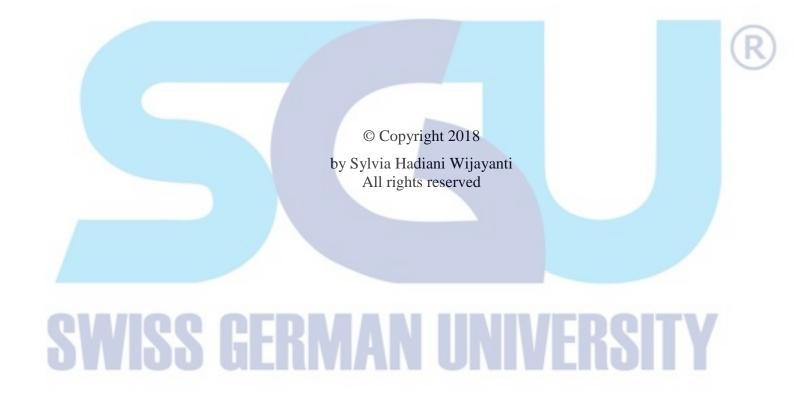
Revision after Thesis Defense on 1 August 2018

STATEMENT BY THE AUTHOR

I hereby declare that this submission is my own work and t	o the best of my
knowledge, it contains no material previously published or written	by another person,
nor material which to a substantial extent has been accepted for the	award of any other
degree or diploma at any educational institution, except where due	acknowledgement
is made in the thesis.	
Sylvia Hadiani Wijayanti	
Student	Date
Approved by:	
Edi Sofyan, B. Eng., M.Eng., Ph.D. Thesis Advisor	Date
Dr. Ir. Hanny Berchmans, M.Sc.	
Thesis Co-Advisor	Date
Dr. Irvan Setiadi Kartawiria, S.T., M.Sc.	
Dean	Date

ABSTRACT

OPTIMIZATION ANALYSIS OF PNEUMATIC SYSTEM IN AUTOMATIC FILLING MACHINE


By

Sylvia Hadiani Wijayanti Edi Sofyan, B. Eng., M.Eng., Ph.D. Dr. Ir. Hanny Berchmans, M.Sc.

SWISS GERMAN UNIVERSITY

Automatic filling machine is a prototype of industrial filling machine that imitate filling process with automatic system. Filling process be held with fill a tin can with buckshot. This Automatic Filling Machine is planned to be a learning tool for students at Akademi Tehnik Mesin Industri (ATMI) Cikarang as an example of machine used in industrial world. This machine uses PLC control with actuators like motors and pneumatic cylinders. Like any machine in general, this machine has some drawbacks. During the experimental process with this machine, it was found that the synchronization of the pneumatic cylinders was quite bad resulting in the failure of the product. As an automatic machine, it should be the product failure is pressed to the lowest as possible. Therefore, the analysis to optimize the parameters on the pneumatic cylinder is carried out by bringing hope if the analysis is successful then the Automatic Filling Machine will function at best. The analysis will be done by drawing the pneumatic part of the most problematic by using Solidworks software, then this drawing is exported to MatLab Simulink and added PID controller to obtain the best simulation for the most optimal pneumatic cylinder suitability.

Keywords: Automatic Filling Machine, Pneumatic Cylinder, Solidworks, Matlab Simulink

DEDICATION

Jesus Christ,

for all the blessings given to me.

Daddy and Mommy,

BIG Brother, and my friends,

who always give support to the work of this thesis

SWISS GERMAN UNIVERSITY

ACKNOWLEDGEMENTS

I would like to express deep gratitude to my advisor Mr. Edi Sofyan, B. Eng., M.Eng., Ph.D. and my co-advisor Mr. Dr.Ir. Hanny Berchmans, M.Sc., for their guidance, encouragement and gracious support to this work.

I would also like to thank the Master of Mechanical Engineering Program at Swiss German University (SGU) for giving me opportunity to write an honors thesis, to all of my lecturers who gave me new knowledge through their lessons, to all staff of SGU which always ensures we can learn comfortably.

And last, for my group, Batch V, thank you for filling in the days of learning at the SGU more interesting. A lot of sweat, tears, fatigue, aggravation, anger, and laughter coloring this process. My best wishes for everyone.

SWISS GERMAN UNIVERSITY

TABLE OF CONTENTS

	Page
STATEMENT BY THE AUTHOR	2
ABSTRACT	3
DEDICATION	
ACKNOWLEDGEMENTS	6
LIST OF FIGURES	9
CHAPTER 1 - INTRODUCTION	10
1.1 Background	10
1.2 Research Problem	10
1.3 Objectives	11
1.4 Significance of Study	11
1.5 Research Question	11
1.6 Hypothesis	12
CHAPTER 2 - LITERATURE REVIEW	13
2.1 Theoretical Perspectives	13
2.1.1 Pneumatic in review	13
2.1.2 Pneumatic Cylinder	
2.1.3 Cylinder Construction	15
2.1.4 Cylinder Calculation	16
2.1.5 Piston Speed	17
2.1.6 Solenoid Valve	18
2.2 PID Controller	19
2.3 Previous Studies	21
CHAPTER 3 – RESEARCH METHODS	24
3.1 Materials and Equipment	24
3.1.1 Automatic Filling Machine	24
3.1.2 Pneumatic Laboratory Training Kit	28
3.1.3 Matrix Laboratory (Matlab) / Simulink	28
3.1.4 Simscape Multibody	29
3.1.5 Solidworks	30
3.2 Analytical Method	32
3.2.1 Create 3D design on Solidworks in Accordance with Original Filling Machine Condition	

3.2.2 Mathematical Model for Double Chamber Pneumatics System	33
3.2.3 Simscape Multibody	36
3.2.4 PID Controller	37
CHAPTER 4 – RESULTS AND DISCUSSIONS	38
4.1 Calculation of Force Requirements on Each Cylinder	38
4.1.1 20x100 Cylinder	38
4.1.2 16x30 Cylinder	38
4.2 Result of Mathematical Model for Double Chamber Pneumatic System	39
4.3 3D Drawing Result	42
4.4 Simscape Multibody Result	42
4.5 Results and analysis of PID controller usage in Simscape Multibody	44
4.5.1 Simulink for Cylinder Assembly	44
4.5.2 Parameters of End Result of Simulink Simulation	45
4.6 Discussion about the work on this thesis	48
4.6.1 Simulink Simscape Multibody	48
4.6.2 Use of Result that Obtained from the Simulation Result	49
CHAPTER 5 – CONCLUSIONS AND RECCOMENDATIONS	50
5.1 Conclusions	50
5.2 Recommendations	51
GLOSSARY	53
REFERENCES	54
APPENDIX	
CURRICULUM VITAE	68
9 AA 199 REVIAIWIA NIJIA EU91	